* [WIP] Add lower and upper bounds on the label for survival analysis
* Update test MetaInfo.SaveLoadBinary to account for extra two fields
* Don't clear qids_ for version 2 of MetaInfo
* Add SetInfo() and GetInfo() method for lower and upper bounds
* changes to aft
* Add parameter class for AFT; use enum's to represent distribution and event type
* Add AFT metric
* changes to neg grad to grad
* changes to binomial loss
* changes to overflow
* changes to eps
* changes to code refactoring
* changes to code refactoring
* changes to code refactoring
* Re-factor survival analysis
* Remove aft namespace
* Move function bodies out of AFTNormal and AFTLogistic, to reduce clutter
* Move function bodies out of AFTLoss, to reduce clutter
* Use smart pointer to store AFTDistribution and AFTLoss
* Rename AFTNoiseDistribution enum to AFTDistributionType for clarity
The enum class was not a distribution itself but a distribution type
* Add AFTDistribution::Create() method for convenience
* changes to extreme distribution
* changes to extreme distribution
* changes to extreme
* changes to extreme distribution
* changes to left censored
* deleted cout
* changes to x,mu and sd and code refactoring
* changes to print
* changes to hessian formula in censored and uncensored
* changes to variable names and pow
* changes to Logistic Pdf
* changes to parameter
* Expose lower and upper bound labels to R package
* Use example weights; normalize log likelihood metric
* changes to CHECK
* changes to logistic hessian to standard formula
* changes to logistic formula
* Comply with coding style guideline
* Revert back Rabit submodule
* Revert dmlc-core submodule
* Comply with coding style guideline (clang-tidy)
* Fix an error in AFTLoss::Gradient()
* Add missing files to amalgamation
* Address @RAMitchell's comment: minimize future change in MetaInfo interface
* Fix lint
* Fix compilation error on 32-bit target, when size_t == bst_uint
* Allocate sufficient memory to hold extra label info
* Use OpenMP to speed up
* Fix compilation on Windows
* Address reviewer's feedback
* Add unit tests for probability distributions
* Make Metric subclass of Configurable
* Address reviewer's feedback: Configure() AFT metric
* Add a dummy test for AFT metric configuration
* Complete AFT configuration test; remove debugging print
* Rename AFT parameters
* Clarify test comment
* Add a dummy test for AFT loss for uncensored case
* Fix a bug in AFT loss for uncensored labels
* Complete unit test for AFT loss metric
* Simplify unit tests for AFT metric
* Add unit test to verify aggregate output from AFT metric
* Use EXPECT_* instead of ASSERT_*, so that we run all unit tests
* Use aft_loss_param when serializing AFTObj
This is to be consistent with AFT metric
* Add unit tests for AFT Objective
* Fix OpenMP bug; clarify semantics for shared variables used in OpenMP loops
* Add comments
* Remove AFT prefix from probability distribution; put probability distribution in separate source file
* Add comments
* Define kPI and kEulerMascheroni in probability_distribution.h
* Add probability_distribution.cc to amalgamation
* Remove unnecessary diff
* Address reviewer's feedback: define variables where they're used
* Eliminate all INFs and NANs from AFT loss and gradient
* Add demo
* Add tutorial
* Fix lint
* Use 'survival:aft' to be consistent with 'survival:cox'
* Move sample data to demo/data
* Add visual demo with 1D toy data
* Add Python tests
Co-authored-by: Philip Cho <chohyu01@cs.washington.edu>
* Use pre-rounding based method to obtain reproducible floating point
summation.
* GPU Hist for regression and classification are bit-by-bit reproducible.
* Add doc.
* Switch to thrust reduce for `node_sum_gradient`.
- move segment sorter to common
- this is the first of a handful of pr's that splits the larger pr #5326
- it moves this facility to common (from ranking objective class), so that it can be
used for metric computation
- it also wraps all the bald device pointers into span.
* Remove f-string, since it's not supported by Python 3.5 (#5330)
* Remove f-string, since it's not supported by Python 3.5
* Add Python 3.5 to CI, to ensure compatibility
* Remove duplicated matplotlib
* Show deprecation notice for Python 3.5
* Fix lint
* Fix lint
* Fix a unit test that mistook MINOR ver for PATCH ver
* Enforce only major version in JSON model schema
* Bump version to 1.1.0-SNAPSHOT
Move this function into gbtree, and uses only updater for doing so. As now the predictor knows exactly how many trees to predict, there's no need for it to update the prediction cache.
* Move prediction cache into Learner.
* Clean-ups
- Remove duplicated cache in Learner and GBM.
- Remove ad-hoc fix of invalid cache.
- Remove `PredictFromCache` in predictors.
- Remove prediction cache for linear altogether, as it's only moving the
prediction into training process but doesn't provide any actual overall speed
gain.
- The cache is now unique to Learner, which means the ownership is no longer
shared by any other components.
* Changes
- Add version to prediction cache.
- Use weak ptr to check expired DMatrix.
- Pass shared pointer instead of raw pointer.
* Turn xgboost::DataType into C++11 enum class
* New binary serialization format for DMatrix::MetaInfo
* Fix clang-tidy
* Fix c++ test
* Implement new format proposal
* Move helper functions to anonymous namespace; remove unneeded field
* Fix lint
* Add shape.
* Keep only roundtrip test.
* Fix test.
* various fixes
* Update data.cc
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
* Simplify DropTrees calling logic
* Add `training` parameter for prediction method.
* [Breaking]: Add `training` to C API.
* Change for R and Python custom objective.
* Correct comment.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
* Fix syncing DMatrix columns.
* notes for tree method.
* Enable feature validation for all interfaces except for jvm.
* Better tests for boosting from predictions.
* Disable validation on JVM.
* Disable parameter validation for now.
Scikit-Learn passes all parameters down to XGBoost, whether they are used or
not.
* Add option `validate_parameters`.
* - implementation of map ranking algorithm
- also effected necessary suggestions mentioned in the earlier ranking pr's
- made some performance improvements to the ndcg algo as well
* Add OpenMP as CMake target
* Require CMake 3.12, to allow linking OpenMP target to objxgboost
* Specify OpenMP compiler flag for CUDA host compiler
* Require CMake 3.16+ if the OS is Mac OSX
* Use AppleClang in Mac tests.
* Update dmlc-core