Fix pruner. (#5335)
* Honor the tree depth. * Prevent pruning pruned node.
This commit is contained in:
parent
b0ed3f0a66
commit
e0509b3307
@ -99,9 +99,10 @@ struct RTreeNodeStat {
|
||||
*/
|
||||
class RegTree : public Model {
|
||||
public:
|
||||
/*! \brief auxiliary statistics of node to help tree building */
|
||||
using SplitCondT = bst_float;
|
||||
static constexpr int32_t kInvalidNodeId {-1};
|
||||
static constexpr uint32_t kDeletedNodeMarker = std::numeric_limits<uint32_t>::max();
|
||||
|
||||
/*! \brief tree node */
|
||||
class Node {
|
||||
public:
|
||||
@ -158,7 +159,7 @@ class RegTree : public Model {
|
||||
}
|
||||
/*! \brief whether this node is deleted */
|
||||
XGBOOST_DEVICE bool IsDeleted() const {
|
||||
return sindex_ == std::numeric_limits<uint32_t>::max();
|
||||
return sindex_ == kDeletedNodeMarker;
|
||||
}
|
||||
/*! \brief whether current node is root */
|
||||
XGBOOST_DEVICE bool IsRoot() const { return parent_ == kInvalidNodeId; }
|
||||
@ -201,7 +202,7 @@ class RegTree : public Model {
|
||||
}
|
||||
/*! \brief mark that this node is deleted */
|
||||
XGBOOST_DEVICE void MarkDelete() {
|
||||
this->sindex_ = std::numeric_limits<unsigned>::max();
|
||||
this->sindex_ = kDeletedNodeMarker;
|
||||
}
|
||||
/*! \brief Reuse this deleted node. */
|
||||
XGBOOST_DEVICE void Reuse() {
|
||||
@ -534,6 +535,13 @@ class RegTree : public Model {
|
||||
// delete a tree node, keep the parent field to allow trace back
|
||||
void DeleteNode(int nid) {
|
||||
CHECK_GE(nid, 1);
|
||||
auto pid = (*this)[nid].Parent();
|
||||
if (nid == (*this)[pid].LeftChild()) {
|
||||
(*this)[pid].SetLeftChild(kInvalidNodeId);
|
||||
} else {
|
||||
(*this)[pid].SetRightChild(kInvalidNodeId);
|
||||
}
|
||||
|
||||
deleted_nodes_.push_back(nid);
|
||||
nodes_[nid].MarkDelete();
|
||||
++param.num_deleted;
|
||||
@ -548,16 +556,20 @@ inline void RegTree::FVec::Init(size_t size) {
|
||||
}
|
||||
|
||||
inline void RegTree::FVec::Fill(const SparsePage::Inst& inst) {
|
||||
for (bst_uint i = 0; i < inst.size(); ++i) {
|
||||
if (inst[i].index >= data_.size()) continue;
|
||||
data_[inst[i].index].fvalue = inst[i].fvalue;
|
||||
for (auto const& entry : inst) {
|
||||
if (entry.index >= data_.size()) {
|
||||
continue;
|
||||
}
|
||||
data_[entry.index].fvalue = entry.fvalue;
|
||||
}
|
||||
}
|
||||
|
||||
inline void RegTree::FVec::Drop(const SparsePage::Inst& inst) {
|
||||
for (bst_uint i = 0; i < inst.size(); ++i) {
|
||||
if (inst[i].index >= data_.size()) continue;
|
||||
data_[inst[i].index].flag = -1;
|
||||
for (auto const& entry : inst) {
|
||||
if (entry.index >= data_.size()) {
|
||||
continue;
|
||||
}
|
||||
data_[entry.index].flag = -1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@ -220,8 +220,9 @@ struct TrainParam : public XGBoostParameter<TrainParam> {
|
||||
}
|
||||
|
||||
/*! \brief given the loss change, whether we need to invoke pruning */
|
||||
inline bool NeedPrune(double loss_chg, int depth) const {
|
||||
return loss_chg < this->min_split_loss;
|
||||
bool NeedPrune(double loss_chg, int depth) const {
|
||||
return loss_chg < this->min_split_loss ||
|
||||
(this->max_depth != 0 && depth > this->max_depth);
|
||||
}
|
||||
/*! \brief maximum sketch size */
|
||||
inline unsigned MaxSketchSize() const {
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
/*!
|
||||
* Copyright 2014 by Contributors
|
||||
* Copyright 2014-2020 by Contributors
|
||||
* \file updater_prune.cc
|
||||
* \brief prune a tree given the statistics
|
||||
* \author Tianqi Chen
|
||||
@ -10,6 +10,7 @@
|
||||
#include <string>
|
||||
#include <memory>
|
||||
|
||||
#include "xgboost/base.h"
|
||||
#include "xgboost/json.h"
|
||||
#include "./param.h"
|
||||
#include "../common/io.h"
|
||||
@ -52,7 +53,7 @@ class TreePruner: public TreeUpdater {
|
||||
float lr = param_.learning_rate;
|
||||
param_.learning_rate = lr / trees.size();
|
||||
for (auto tree : trees) {
|
||||
this->DoPrune(*tree);
|
||||
this->DoPrune(tree);
|
||||
}
|
||||
param_.learning_rate = lr;
|
||||
syncher_->Update(gpair, p_fmat, trees);
|
||||
@ -60,12 +61,20 @@ class TreePruner: public TreeUpdater {
|
||||
|
||||
private:
|
||||
// try to prune off current leaf
|
||||
inline int TryPruneLeaf(RegTree &tree, int nid, int depth, int npruned) { // NOLINT(*)
|
||||
if (tree[nid].IsRoot()) return npruned;
|
||||
int pid = tree[nid].Parent();
|
||||
RTreeNodeStat &s = tree.Stat(pid);
|
||||
++s.leaf_child_cnt;
|
||||
if (s.leaf_child_cnt >= 2 && param_.NeedPrune(s.loss_chg, depth - 1)) {
|
||||
bst_node_t TryPruneLeaf(RegTree &tree, int nid, int depth, int npruned) { // NOLINT(*)
|
||||
CHECK(tree[nid].IsLeaf());
|
||||
if (tree[nid].IsRoot()) {
|
||||
return npruned;
|
||||
}
|
||||
bst_node_t pid = tree[nid].Parent();
|
||||
CHECK(!tree[pid].IsLeaf());
|
||||
RTreeNodeStat const &s = tree.Stat(pid);
|
||||
// Only prune when both child are leaf.
|
||||
auto left = tree[pid].LeftChild();
|
||||
auto right = tree[pid].RightChild();
|
||||
bool balanced = tree[left].IsLeaf() &&
|
||||
right != RegTree::kInvalidNodeId && tree[right].IsLeaf();
|
||||
if (balanced && param_.NeedPrune(s.loss_chg, depth)) {
|
||||
// need to be pruned
|
||||
tree.ChangeToLeaf(pid, param_.learning_rate * s.base_weight);
|
||||
// tail recursion
|
||||
@ -75,14 +84,11 @@ class TreePruner: public TreeUpdater {
|
||||
}
|
||||
}
|
||||
/*! \brief do pruning of a tree */
|
||||
inline void DoPrune(RegTree &tree) { // NOLINT(*)
|
||||
int npruned = 0;
|
||||
// initialize auxiliary statistics
|
||||
void DoPrune(RegTree* p_tree) {
|
||||
auto& tree = *p_tree;
|
||||
bst_node_t npruned = 0;
|
||||
for (int nid = 0; nid < tree.param.num_nodes; ++nid) {
|
||||
tree.Stat(nid).leaf_child_cnt = 0;
|
||||
}
|
||||
for (int nid = 0; nid < tree.param.num_nodes; ++nid) {
|
||||
if (tree[nid].IsLeaf()) {
|
||||
if (tree[nid].IsLeaf() && !tree[nid].IsDeleted()) {
|
||||
npruned = this->TryPruneLeaf(tree, nid, tree.GetDepth(nid), npruned);
|
||||
}
|
||||
}
|
||||
|
||||
@ -1,33 +1,34 @@
|
||||
/*!
|
||||
* Copyright 2018-2019 by Contributors
|
||||
*/
|
||||
#include "../helpers.h"
|
||||
#include <xgboost/data.h>
|
||||
#include <xgboost/host_device_vector.h>
|
||||
#include <xgboost/tree_updater.h>
|
||||
#include <xgboost/learner.h>
|
||||
#include <gtest/gtest.h>
|
||||
#include <vector>
|
||||
#include <string>
|
||||
#include <memory>
|
||||
|
||||
#include "../helpers.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace tree {
|
||||
|
||||
TEST(Updater, Prune) {
|
||||
int constexpr kNCols = 16;
|
||||
int constexpr kCols = 16;
|
||||
|
||||
std::vector<std::pair<std::string, std::string>> cfg;
|
||||
cfg.emplace_back(std::pair<std::string, std::string>(
|
||||
"num_feature", std::to_string(kNCols)));
|
||||
cfg.emplace_back(std::pair<std::string, std::string>("num_feature",
|
||||
std::to_string(kCols)));
|
||||
cfg.emplace_back(std::pair<std::string, std::string>(
|
||||
"min_split_loss", "10"));
|
||||
cfg.emplace_back(std::pair<std::string, std::string>(
|
||||
"silent", "1"));
|
||||
|
||||
// These data are just place holders.
|
||||
HostDeviceVector<GradientPair> gpair =
|
||||
{ {0.50f, 0.25f}, {0.50f, 0.25f}, {0.50f, 0.25f}, {0.50f, 0.25f},
|
||||
{0.25f, 0.24f}, {0.25f, 0.24f}, {0.25f, 0.24f}, {0.25f, 0.24f} };
|
||||
auto dmat = CreateDMatrix(32, 16, 0.4, 3);
|
||||
auto dmat = CreateDMatrix(32, kCols, 0.4, 3);
|
||||
|
||||
auto lparam = CreateEmptyGenericParam(GPUIDX);
|
||||
|
||||
@ -57,8 +58,29 @@ TEST(Updater, Prune) {
|
||||
|
||||
ASSERT_EQ(tree.NumExtraNodes(), 2);
|
||||
|
||||
// Test depth
|
||||
// loss_chg > min_split_loss
|
||||
tree.ExpandNode(tree[0].LeftChild(),
|
||||
0, 0.5f, true, 0.3, 0.4, 0.5,
|
||||
/*loss_chg=*/18.0f, 0.0f);
|
||||
tree.ExpandNode(tree[0].RightChild(),
|
||||
0, 0.5f, true, 0.3, 0.4, 0.5,
|
||||
/*loss_chg=*/19.0f, 0.0f);
|
||||
cfg.emplace_back(std::make_pair("max_depth", "1"));
|
||||
pruner->Configure(cfg);
|
||||
pruner->Update(&gpair, dmat->get(), trees);
|
||||
|
||||
ASSERT_EQ(tree.NumExtraNodes(), 2);
|
||||
|
||||
tree.ExpandNode(tree[0].LeftChild(),
|
||||
0, 0.5f, true, 0.3, 0.4, 0.5,
|
||||
/*loss_chg=*/18.0f, 0.0f);
|
||||
cfg.emplace_back(std::make_pair("min_split_loss", "0"));
|
||||
pruner->Configure(cfg);
|
||||
pruner->Update(&gpair, dmat->get(), trees);
|
||||
ASSERT_EQ(tree.NumExtraNodes(), 2);
|
||||
|
||||
delete dmat;
|
||||
}
|
||||
|
||||
} // namespace tree
|
||||
} // namespace xgboost
|
||||
|
||||
@ -26,6 +26,30 @@ class TestUpdaters(unittest.TestCase):
|
||||
result = run_suite(param)
|
||||
assert_results_non_increasing(result, 1e-2)
|
||||
|
||||
@pytest.mark.skipif(**tm.no_sklearn())
|
||||
def test_pruner(self):
|
||||
import sklearn
|
||||
params = {'tree_method': 'exact'}
|
||||
cancer = sklearn.datasets.load_breast_cancer()
|
||||
X = cancer['data']
|
||||
y = cancer["target"]
|
||||
|
||||
dtrain = xgb.DMatrix(X, y)
|
||||
booster = xgb.train(params, dtrain=dtrain, num_boost_round=10)
|
||||
grown = str(booster.get_dump())
|
||||
|
||||
params = {'updater': 'prune', 'process_type': 'update', 'gamma': '0.2'}
|
||||
booster = xgb.train(params, dtrain=dtrain, num_boost_round=10,
|
||||
xgb_model=booster)
|
||||
after_prune = str(booster.get_dump())
|
||||
assert grown != after_prune
|
||||
|
||||
booster = xgb.train(params, dtrain=dtrain, num_boost_round=10,
|
||||
xgb_model=booster)
|
||||
second_prune = str(booster.get_dump())
|
||||
# Second prune should not change the tree
|
||||
assert after_prune == second_prune
|
||||
|
||||
@pytest.mark.skipif(**tm.no_sklearn())
|
||||
def test_fast_histmaker(self):
|
||||
variable_param = {'tree_method': ['hist'],
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user