Remove unnecessary DMatrix methods (#5324)
This commit is contained in:
parent
655cf17b60
commit
b0ed3f0a66
@ -451,8 +451,6 @@ class DMatrix {
|
||||
// the following are column meta data, should be able to answer them fast.
|
||||
/*! \return Whether the data columns single column block. */
|
||||
virtual bool SingleColBlock() const = 0;
|
||||
/*! \brief get column density */
|
||||
virtual float GetColDensity(size_t cidx) = 0;
|
||||
/*! \brief virtual destructor */
|
||||
virtual ~DMatrix() = default;
|
||||
|
||||
|
||||
@ -16,21 +16,6 @@ MetaInfo& SimpleDMatrix::Info() { return info; }
|
||||
|
||||
const MetaInfo& SimpleDMatrix::Info() const { return info; }
|
||||
|
||||
float SimpleDMatrix::GetColDensity(size_t cidx) {
|
||||
size_t column_size = 0;
|
||||
// Use whatever version of column batches already exists
|
||||
if (sorted_column_page_) {
|
||||
auto batch = this->GetBatches<SortedCSCPage>();
|
||||
column_size = (*batch.begin())[cidx].size();
|
||||
} else {
|
||||
auto batch = this->GetBatches<CSCPage>();
|
||||
column_size = (*batch.begin())[cidx].size();
|
||||
}
|
||||
|
||||
size_t nmiss = this->Info().num_row_ - column_size;
|
||||
return 1.0f - (static_cast<float>(nmiss)) / this->Info().num_row_;
|
||||
}
|
||||
|
||||
BatchSet<SparsePage> SimpleDMatrix::GetRowBatches() {
|
||||
// since csr is the default data structure so `source_` is always available.
|
||||
auto begin_iter = BatchIterator<SparsePage>(
|
||||
@ -76,8 +61,6 @@ BatchSet<EllpackPage> SimpleDMatrix::GetEllpackBatches(const BatchParam& param)
|
||||
return BatchSet<EllpackPage>(begin_iter);
|
||||
}
|
||||
|
||||
bool SimpleDMatrix::SingleColBlock() const { return true; }
|
||||
|
||||
template <typename AdapterT>
|
||||
SimpleDMatrix::SimpleDMatrix(AdapterT* adapter, float missing, int nthread) {
|
||||
// Set number of threads but keep old value so we can reset it after
|
||||
|
||||
@ -30,9 +30,7 @@ class SimpleDMatrix : public DMatrix {
|
||||
|
||||
const MetaInfo& Info() const override;
|
||||
|
||||
float GetColDensity(size_t cidx) override;
|
||||
|
||||
bool SingleColBlock() const override;
|
||||
bool SingleColBlock() const override { return true; }
|
||||
|
||||
/*! \brief magic number used to identify SimpleDMatrix binary files */
|
||||
static const int kMagic = 0xffffab01;
|
||||
|
||||
@ -58,28 +58,6 @@ BatchSet<EllpackPage> SparsePageDMatrix::GetEllpackBatches(const BatchParam& par
|
||||
return BatchSet<EllpackPage>(begin_iter);
|
||||
}
|
||||
|
||||
float SparsePageDMatrix::GetColDensity(size_t cidx) {
|
||||
// Finds densities if we don't already have them
|
||||
if (col_density_.empty()) {
|
||||
std::vector<size_t> column_size(this->Info().num_col_);
|
||||
for (const auto &batch : this->GetBatches<CSCPage>()) {
|
||||
for (auto i = 0u; i < batch.Size(); i++) {
|
||||
column_size[i] += batch[i].size();
|
||||
}
|
||||
}
|
||||
col_density_.resize(column_size.size());
|
||||
for (auto i = 0u; i < col_density_.size(); i++) {
|
||||
size_t nmiss = this->Info().num_row_ - column_size[i];
|
||||
col_density_[i] =
|
||||
1.0f - (static_cast<float>(nmiss)) / this->Info().num_row_;
|
||||
}
|
||||
}
|
||||
return col_density_.at(cidx);
|
||||
}
|
||||
|
||||
bool SparsePageDMatrix::SingleColBlock() const {
|
||||
return false;
|
||||
}
|
||||
} // namespace data
|
||||
} // namespace xgboost
|
||||
#endif // DMLC_ENABLE_STD_THREAD
|
||||
|
||||
@ -37,9 +37,7 @@ class SparsePageDMatrix : public DMatrix {
|
||||
|
||||
const MetaInfo& Info() const override;
|
||||
|
||||
float GetColDensity(size_t cidx) override;
|
||||
|
||||
bool SingleColBlock() const override;
|
||||
bool SingleColBlock() const override { return false; }
|
||||
|
||||
private:
|
||||
BatchSet<SparsePage> GetRowBatches() override;
|
||||
|
||||
@ -61,7 +61,10 @@ class GPUCoordinateUpdater : public LinearUpdater { // NOLINT
|
||||
CHECK(p_fmat->SingleColBlock());
|
||||
SparsePage const& batch = *(p_fmat->GetBatches<CSCPage>().begin());
|
||||
|
||||
if ( IsEmpty() ) { return; }
|
||||
if (IsEmpty()) {
|
||||
return;
|
||||
}
|
||||
|
||||
dh::safe_cuda(cudaSetDevice(learner_param_->gpu_id));
|
||||
// The begin and end indices for the section of each column associated with
|
||||
// this device
|
||||
|
||||
@ -77,6 +77,24 @@ class ColMaker: public TreeUpdater {
|
||||
return "grow_colmaker";
|
||||
}
|
||||
|
||||
void LazyGetColumnDensity(DMatrix *dmat) {
|
||||
// Finds densities if we don't already have them
|
||||
if (column_densities_.empty()) {
|
||||
std::vector<size_t> column_size(dmat->Info().num_col_);
|
||||
for (const auto &batch : dmat->GetBatches<SortedCSCPage>()) {
|
||||
for (auto i = 0u; i < batch.Size(); i++) {
|
||||
column_size[i] += batch[i].size();
|
||||
}
|
||||
}
|
||||
column_densities_.resize(column_size.size());
|
||||
for (auto i = 0u; i < column_densities_.size(); i++) {
|
||||
size_t nmiss = dmat->Info().num_row_ - column_size[i];
|
||||
column_densities_[i] =
|
||||
1.0f - (static_cast<float>(nmiss)) / dmat->Info().num_row_;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Update(HostDeviceVector<GradientPair> *gpair,
|
||||
DMatrix* dmat,
|
||||
const std::vector<RegTree*> &trees) override {
|
||||
@ -84,6 +102,7 @@ class ColMaker: public TreeUpdater {
|
||||
LOG(FATAL) << "Updater `grow_colmaker` or `exact` tree method doesn't "
|
||||
"support distributed training.";
|
||||
}
|
||||
this->LazyGetColumnDensity(dmat);
|
||||
// rescale learning rate according to size of trees
|
||||
float lr = param_.learning_rate;
|
||||
param_.learning_rate = lr / trees.size();
|
||||
@ -94,7 +113,7 @@ class ColMaker: public TreeUpdater {
|
||||
param_,
|
||||
colmaker_param_,
|
||||
std::unique_ptr<SplitEvaluator>(spliteval_->GetHostClone()),
|
||||
interaction_constraints_);
|
||||
interaction_constraints_, column_densities_);
|
||||
builder.Update(gpair->ConstHostVector(), dmat, tree);
|
||||
}
|
||||
param_.learning_rate = lr;
|
||||
@ -106,6 +125,7 @@ class ColMaker: public TreeUpdater {
|
||||
ColMakerTrainParam colmaker_param_;
|
||||
// SplitEvaluator that will be cloned for each Builder
|
||||
std::unique_ptr<SplitEvaluator> spliteval_;
|
||||
std::vector<float> column_densities_;
|
||||
|
||||
FeatureInteractionConstraintHost interaction_constraints_;
|
||||
// data structure
|
||||
@ -139,11 +159,13 @@ class ColMaker: public TreeUpdater {
|
||||
explicit Builder(const TrainParam& param,
|
||||
const ColMakerTrainParam& colmaker_train_param,
|
||||
std::unique_ptr<SplitEvaluator> spliteval,
|
||||
FeatureInteractionConstraintHost _interaction_constraints)
|
||||
FeatureInteractionConstraintHost _interaction_constraints,
|
||||
const std::vector<float> &column_densities)
|
||||
: param_(param), colmaker_train_param_{colmaker_train_param},
|
||||
nthread_(omp_get_max_threads()),
|
||||
spliteval_(std::move(spliteval)),
|
||||
interaction_constraints_{std::move(_interaction_constraints)} {}
|
||||
interaction_constraints_{std::move(_interaction_constraints)},
|
||||
column_densities_(column_densities) {}
|
||||
// update one tree, growing
|
||||
virtual void Update(const std::vector<GradientPair>& gpair,
|
||||
DMatrix* p_fmat,
|
||||
@ -433,22 +455,14 @@ class ColMaker: public TreeUpdater {
|
||||
#endif // defined(_OPENMP)
|
||||
|
||||
{
|
||||
std::vector<float> densities(num_features);
|
||||
CHECK_EQ(feat_set.size(), num_features);
|
||||
for (bst_omp_uint i = 0; i < num_features; ++i) {
|
||||
bst_feature_t const fid = feat_set[i];
|
||||
densities.at(i) = p_fmat->GetColDensity(fid);
|
||||
}
|
||||
|
||||
#pragma omp parallel for schedule(dynamic, batch_size)
|
||||
for (bst_omp_uint i = 0; i < num_features; ++i) {
|
||||
bst_feature_t const fid = feat_set[i];
|
||||
int32_t const tid = omp_get_thread_num();
|
||||
auto c = batch[fid];
|
||||
const bool ind = c.size() != 0 && c[0].fvalue == c[c.size() - 1].fvalue;
|
||||
auto const density = densities[i];
|
||||
if (colmaker_train_param_.NeedForwardSearch(
|
||||
param_.default_direction, density, ind)) {
|
||||
param_.default_direction, column_densities_[fid], ind)) {
|
||||
this->EnumerateSplit(c.data(), c.data() + c.size(), +1,
|
||||
fid, gpair, stemp_[tid]);
|
||||
}
|
||||
@ -598,6 +612,7 @@ class ColMaker: public TreeUpdater {
|
||||
std::unique_ptr<SplitEvaluator> spliteval_;
|
||||
|
||||
FeatureInteractionConstraintHost interaction_constraints_;
|
||||
const std::vector<float> &column_densities_;
|
||||
};
|
||||
};
|
||||
|
||||
@ -620,11 +635,12 @@ class DistColMaker : public ColMaker {
|
||||
DMatrix* dmat,
|
||||
const std::vector<RegTree*> &trees) override {
|
||||
CHECK_EQ(trees.size(), 1U) << "DistColMaker: only support one tree at a time";
|
||||
this->LazyGetColumnDensity(dmat);
|
||||
Builder builder(
|
||||
param_,
|
||||
colmaker_param_,
|
||||
std::unique_ptr<SplitEvaluator>(spliteval_->GetHostClone()),
|
||||
interaction_constraints_);
|
||||
interaction_constraints_, column_densities_);
|
||||
// build the tree
|
||||
builder.Update(gpair->ConstHostVector(), dmat, trees[0]);
|
||||
//// prune the tree, note that pruner will sync the tree
|
||||
@ -637,12 +653,14 @@ class DistColMaker : public ColMaker {
|
||||
class Builder : public ColMaker::Builder {
|
||||
public:
|
||||
explicit Builder(const TrainParam ¶m,
|
||||
ColMakerTrainParam const& colmaker_train_param,
|
||||
ColMakerTrainParam const &colmaker_train_param,
|
||||
std::unique_ptr<SplitEvaluator> spliteval,
|
||||
FeatureInteractionConstraintHost _interaction_constraints)
|
||||
FeatureInteractionConstraintHost _interaction_constraints,
|
||||
const std::vector<float> &column_densities)
|
||||
: ColMaker::Builder(param, colmaker_train_param,
|
||||
std::move(spliteval),
|
||||
std::move(_interaction_constraints)) {}
|
||||
std::move(_interaction_constraints),
|
||||
column_densities) {}
|
||||
inline void UpdatePosition(DMatrix* p_fmat, const RegTree &tree) {
|
||||
const auto ndata = static_cast<bst_omp_uint>(p_fmat->Info().num_row_);
|
||||
#pragma omp parallel for schedule(static)
|
||||
|
||||
@ -51,9 +51,6 @@ TEST(SimpleDMatrix, ColAccessWithoutBatches) {
|
||||
CreateSimpleTestData(tmp_file);
|
||||
xgboost::DMatrix *dmat = xgboost::DMatrix::Load(tmp_file, true, false);
|
||||
|
||||
// Sorted column access
|
||||
EXPECT_EQ(dmat->GetColDensity(0), 1);
|
||||
EXPECT_EQ(dmat->GetColDensity(1), 0.5);
|
||||
ASSERT_TRUE(dmat->SingleColBlock());
|
||||
|
||||
// Loop over the batches and assert the data is as expected
|
||||
|
||||
@ -47,9 +47,6 @@ TEST(SparsePageDMatrix, ColAccess) {
|
||||
xgboost::DMatrix *dmat =
|
||||
xgboost::DMatrix::Load(tmp_file + "#" + tmp_file + ".cache", true, false);
|
||||
|
||||
EXPECT_EQ(dmat->GetColDensity(0), 1);
|
||||
EXPECT_EQ(dmat->GetColDensity(1), 0.5);
|
||||
|
||||
// Loop over the batches and assert the data is as expected
|
||||
for (auto const &col_batch : dmat->GetBatches<xgboost::SortedCSCPage>()) {
|
||||
EXPECT_EQ(col_batch.Size(), dmat->Info().num_col_);
|
||||
|
||||
@ -96,8 +96,9 @@ TEST(Learner, SLOW_CheckMultiBatch) {
|
||||
// Create sufficiently large data to make two row pages
|
||||
dmlc::TemporaryDirectory tempdir;
|
||||
const std::string tmp_file = tempdir.path + "/big.libsvm";
|
||||
CreateBigTestData(tmp_file, 5000000);
|
||||
std::shared_ptr<DMatrix> dmat(xgboost::DMatrix::Load( tmp_file + "#" + tmp_file + ".cache", true, false));
|
||||
CreateBigTestData(tmp_file, 50000);
|
||||
std::shared_ptr<DMatrix> dmat(xgboost::DMatrix::Load(
|
||||
tmp_file + "#" + tmp_file + ".cache", true, false, "auto", 100));
|
||||
EXPECT_TRUE(FileExists(tmp_file + ".cache.row.page"));
|
||||
EXPECT_FALSE(dmat->SingleColBlock());
|
||||
size_t num_row = dmat->Info().num_row_;
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user