Lazy initialization of device vector. (#5173)

* Lazy initialization of device vector.

* Fix #5162.

* Disable copy constructor of HostDeviceVector.  Prevents implicit copying.

* Fix CPU build.

* Bring back move assignment operator.
This commit is contained in:
Jiaming Yuan 2020-01-07 11:23:05 +08:00 committed by GitHub
parent 77cfbff5a7
commit ee287808fb
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 114 additions and 64 deletions

View File

@ -59,8 +59,25 @@ class MetaInfo {
* can be used to specify initial prediction to boost from.
*/
HostDeviceVector<bst_float> base_margin_;
/*! \brief default constructor */
MetaInfo() = default;
MetaInfo& operator=(MetaInfo const& that) {
this->num_row_ = that.num_row_;
this->num_col_ = that.num_col_;
this->num_nonzero_ = that.num_nonzero_;
this->labels_.Resize(that.labels_.Size());
this->labels_.Copy(that.labels_);
this->group_ptr_ = that.group_ptr_;
this->weights_.Resize(that.weights_.Size());
this->weights_.Copy(that.weights_);
this->base_margin_.Resize(that.base_margin_.Size());
this->base_margin_.Copy(that.base_margin_);
return *this;
}
/*!
* \brief Get weight of each instances.
* \param i Instance index.
@ -246,10 +263,10 @@ class SparsePage {
/**
* \brief Pushes external data batch onto this page
*
* \tparam AdapterBatchT
* \param batch
* \param missing
* \param nthread
* \tparam AdapterBatchT
* \param batch
* \param missing
* \param nthread
*
* \return The maximum number of columns encountered in this input batch. Useful when pushing many adapter batches to work out the total number of columns.
*/

View File

@ -88,8 +88,13 @@ class HostDeviceVector {
HostDeviceVector(std::initializer_list<T> init, int device = -1);
explicit HostDeviceVector(const std::vector<T>& init, int device = -1);
~HostDeviceVector();
HostDeviceVector(const HostDeviceVector<T>&);
HostDeviceVector<T>& operator=(const HostDeviceVector<T>&);
HostDeviceVector(const HostDeviceVector<T>&) = delete;
HostDeviceVector(HostDeviceVector<T>&&);
HostDeviceVector<T>& operator=(const HostDeviceVector<T>&) = delete;
HostDeviceVector<T>& operator=(HostDeviceVector<T>&&);
size_t Size() const;
int DeviceIdx() const;
common::Span<T> DeviceSpan();
@ -116,6 +121,7 @@ class HostDeviceVector {
bool HostCanWrite() const;
bool DeviceCanRead() const;
bool DeviceCanWrite() const;
GPUAccess DeviceAccess() const;
void SetDevice(int device) const;

View File

@ -8,6 +8,7 @@
#include <xgboost/base.h>
#include <xgboost/data.h>
#include <cstdint>
#include <memory>
#include <utility>
#include "xgboost/host_device_vector.h"
@ -18,6 +19,7 @@ struct HostDeviceVectorImpl {
explicit HostDeviceVectorImpl(size_t size, T v) : data_h_(size, v) {}
HostDeviceVectorImpl(std::initializer_list<T> init) : data_h_(init) {}
explicit HostDeviceVectorImpl(std::vector<T> init) : data_h_(std::move(init)) {}
HostDeviceVectorImpl(HostDeviceVectorImpl&& that) : data_h_(std::move(that.data_h_)) {}
void Swap(HostDeviceVectorImpl &other) {
data_h_.swap(other.data_h_);
@ -47,6 +49,22 @@ HostDeviceVector<T>::HostDeviceVector(const std::vector<T>& init, int device)
impl_ = new HostDeviceVectorImpl<T>(init);
}
template <typename T>
HostDeviceVector<T>::HostDeviceVector(HostDeviceVector<T>&& that) {
impl_ = new HostDeviceVectorImpl<T>(std::move(*that.impl_));
}
template <typename T>
HostDeviceVector<T>& HostDeviceVector<T>::operator=(HostDeviceVector<T>&& that) {
if (this == &that) { return *this; }
std::unique_ptr<HostDeviceVectorImpl<T>> new_impl(
new HostDeviceVectorImpl<T>(std::move(*that.impl_)));
delete impl_;
impl_ = new_impl.release();
return *this;
}
template <typename T>
HostDeviceVector<T>::~HostDeviceVector() {
delete impl_;
@ -54,21 +72,8 @@ HostDeviceVector<T>::~HostDeviceVector() {
}
template <typename T>
HostDeviceVector<T>::HostDeviceVector(const HostDeviceVector<T>& other)
: impl_(nullptr) {
impl_ = new HostDeviceVectorImpl<T>(*other.impl_);
}
template <typename T>
HostDeviceVector<T>& HostDeviceVector<T>::operator=(const HostDeviceVector<T>& other) {
if (this == &other) {
return *this;
}
HostDeviceVectorImpl<T> newInstance(*other.impl_);
newInstance.Swap(*impl_);
return *this;
GPUAccess HostDeviceVector<T>::DeviceAccess() const {
return kNone;
}
template <typename T>

View File

@ -29,7 +29,7 @@ class HostDeviceVectorImpl {
if (device >= 0) {
gpu_access_ = GPUAccess::kWrite;
SetDevice();
data_d_.resize(size, v);
data_d_->resize(size, v);
} else {
data_h_.resize(size, v);
}
@ -47,34 +47,40 @@ class HostDeviceVectorImpl {
}
}
HostDeviceVectorImpl(HostDeviceVectorImpl<T>&& that) :
device_{that.device_},
data_h_{std::move(that.data_h_)},
data_d_{std::move(that.data_d_)},
gpu_access_{that.gpu_access_} {}
~HostDeviceVectorImpl() {
if (device_ >= 0) {
SetDevice();
}
}
size_t Size() const { return HostCanRead() ? data_h_.size() : data_d_.size(); }
size_t Size() const { return HostCanRead() ? data_h_.size() : data_d_->size(); }
int DeviceIdx() const { return device_; }
T* DevicePointer() {
LazySyncDevice(GPUAccess::kWrite);
return data_d_.data().get();
return data_d_->data().get();
}
const T* ConstDevicePointer() {
LazySyncDevice(GPUAccess::kRead);
return data_d_.data().get();
return data_d_->data().get();
}
common::Span<T> DeviceSpan() {
LazySyncDevice(GPUAccess::kWrite);
return {data_d_.data().get(), Size()};
return {data_d_->data().get(), Size()};
}
common::Span<const T> ConstDeviceSpan() {
LazySyncDevice(GPUAccess::kRead);
return {data_d_.data().get(), Size()};
return {data_d_->data().get(), Size()};
}
void Fill(T v) { // NOLINT
@ -83,17 +89,19 @@ class HostDeviceVectorImpl {
} else {
gpu_access_ = GPUAccess::kWrite;
SetDevice();
thrust::fill(data_d_.begin(), data_d_.end(), v);
thrust::fill(data_d_->begin(), data_d_->end(), v);
}
}
void Copy(HostDeviceVectorImpl<T>* other) {
CHECK_EQ(Size(), other->Size());
SetDevice(other->device_);
// Data is on host.
if (HostCanWrite() && other->HostCanWrite()) {
std::copy(other->data_h_.begin(), other->data_h_.end(), data_h_.begin());
return;
}
SetDevice();
CopyToDevice(other);
}
@ -138,11 +146,11 @@ class HostDeviceVectorImpl {
void Resize(size_t new_size, T v) {
if (new_size == Size()) { return; }
if (Size() == 0 && device_ >= 0) {
if ((Size() == 0 && device_ >= 0) || (DeviceCanWrite() && device_ >= 0)) {
// fast on-device resize
gpu_access_ = GPUAccess::kWrite;
SetDevice();
data_d_.resize(new_size, v);
data_d_->resize(new_size, v);
} else {
// resize on host
LazySyncHost(GPUAccess::kNone);
@ -158,11 +166,11 @@ class HostDeviceVectorImpl {
return;
}
gpu_access_ = access;
if (data_h_.size() != data_d_.size()) { data_h_.resize(data_d_.size()); }
if (data_h_.size() != data_d_->size()) { data_h_.resize(data_d_->size()); }
SetDevice();
dh::safe_cuda(cudaMemcpy(data_h_.data(),
data_d_.data().get(),
data_d_.size() * sizeof(T),
data_d_->data().get(),
data_d_->size() * sizeof(T),
cudaMemcpyDeviceToHost));
}
@ -176,9 +184,9 @@ class HostDeviceVectorImpl {
// data is on the host
LazyResizeDevice(data_h_.size());
SetDevice();
dh::safe_cuda(cudaMemcpy(data_d_.data().get(),
dh::safe_cuda(cudaMemcpy(data_d_->data().get(),
data_h_.data(),
data_d_.size() * sizeof(T),
data_d_->size() * sizeof(T),
cudaMemcpyHostToDevice));
gpu_access_ = access;
}
@ -189,11 +197,12 @@ class HostDeviceVectorImpl {
bool DeviceCanAccess(GPUAccess access) const { return gpu_access_ >= access; }
bool DeviceCanRead() const { return DeviceCanAccess(GPUAccess::kRead); }
bool DeviceCanWrite() const { return DeviceCanAccess(GPUAccess::kWrite); }
GPUAccess Access() const { return gpu_access_; }
private:
int device_{-1};
std::vector<T> data_h_{};
dh::device_vector<T> data_d_{};
std::unique_ptr<dh::device_vector<T>> data_d_{};
GPUAccess gpu_access_{GPUAccess::kNone};
void CopyToDevice(HostDeviceVectorImpl* other) {
@ -203,8 +212,8 @@ class HostDeviceVectorImpl {
LazyResizeDevice(Size());
gpu_access_ = GPUAccess::kWrite;
SetDevice();
dh::safe_cuda(cudaMemcpyAsync(data_d_.data().get(), other->data_d_.data().get(),
data_d_.size() * sizeof(T), cudaMemcpyDefault));
dh::safe_cuda(cudaMemcpyAsync(data_d_->data().get(), other->data_d_->data().get(),
data_d_->size() * sizeof(T), cudaMemcpyDefault));
}
}
@ -212,14 +221,14 @@ class HostDeviceVectorImpl {
LazyResizeDevice(Size());
gpu_access_ = GPUAccess::kWrite;
SetDevice();
dh::safe_cuda(cudaMemcpyAsync(data_d_.data().get(), begin,
data_d_.size() * sizeof(T), cudaMemcpyDefault));
dh::safe_cuda(cudaMemcpyAsync(data_d_->data().get(), begin,
data_d_->size() * sizeof(T), cudaMemcpyDefault));
}
void LazyResizeDevice(size_t new_size) {
if (new_size == data_d_.size()) { return; }
if (data_d_ && new_size == data_d_->size()) { return; }
SetDevice();
data_d_.resize(new_size);
data_d_->resize(new_size);
}
void SetDevice() {
@ -229,6 +238,10 @@ class HostDeviceVectorImpl {
} else {
(*cudaSetDeviceHandler)(device_);
}
if (!data_d_) {
data_d_.reset(new dh::device_vector<T>);
}
}
};
@ -245,16 +258,17 @@ HostDeviceVector<T>::HostDeviceVector(const std::vector<T>& init, int device)
: impl_(new HostDeviceVectorImpl<T>(init, device)) {}
template <typename T>
HostDeviceVector<T>::HostDeviceVector(const HostDeviceVector<T>& other)
: impl_(new HostDeviceVectorImpl<T>(*other.impl_)) {}
HostDeviceVector<T>::HostDeviceVector(HostDeviceVector<T>&& other)
: impl_(new HostDeviceVectorImpl<T>(std::move(*other.impl_))) {}
template <typename T>
HostDeviceVector<T>& HostDeviceVector<T>::operator=(const HostDeviceVector<T>& other) {
HostDeviceVector<T>& HostDeviceVector<T>::operator=(HostDeviceVector<T>&& other) {
if (this == &other) { return *this; }
std::unique_ptr<HostDeviceVectorImpl<T>> newImpl(new HostDeviceVectorImpl<T>(*other.impl_));
std::unique_ptr<HostDeviceVectorImpl<T>> new_impl(
new HostDeviceVectorImpl<T>(std::move(*other.impl_)));
delete impl_;
impl_ = newImpl.release();
impl_ = new_impl.release();
return *this;
}
@ -338,6 +352,11 @@ bool HostDeviceVector<T>::DeviceCanWrite() const {
return impl_->DeviceCanWrite();
}
template <typename T>
GPUAccess HostDeviceVector<T>::DeviceAccess() const {
return impl_->Access();
}
template <typename T>
void HostDeviceVector<T>::SetDevice(int device) const {
impl_->SetDevice(device);

View File

@ -339,6 +339,7 @@ class GPUPredictor : public xgboost::Predictor {
// the first step only modifies prediction store in learner without following code.
InitOutPredictions(cache_emtry->second.data->Info(),
&(cache_emtry->second.predictions), model);
CHECK_EQ(cache_emtry->second.predictions.Size(), out_preds->Size());
cache_emtry->second.predictions.Copy(*out_preds);
}
}

View File

@ -60,6 +60,7 @@ void PlusOne(HostDeviceVector<int> *v) {
SetDevice(device);
thrust::transform(dh::tcbegin(*v), dh::tcend(*v), dh::tbegin(*v),
[=]__device__(unsigned int a){ return a + 1; });
ASSERT_TRUE(v->DeviceCanWrite());
}
void CheckDevice(HostDeviceVector<int>* v,
@ -125,7 +126,8 @@ TEST(HostDeviceVector, Copy) {
// a separate scope to ensure that v1 is gone before further checks
HostDeviceVector<int> v1;
InitHostDeviceVector(n, device, &v1);
v = v1;
v.Resize(v1.Size());
v.Copy(v1);
}
CheckDevice(&v, n, 0, GPUAccess::kRead);
PlusOne(&v);

View File

@ -11,26 +11,26 @@ TEST(ColumnSampler, Test) {
// No node sampling
cs.Init(n, 1.0f, 0.5f, 0.5f);
auto set0 = *cs.GetFeatureSet(0);
ASSERT_EQ(set0.Size(), 32);
auto set0 = cs.GetFeatureSet(0);
ASSERT_EQ(set0->Size(), 32);
auto set1 = *cs.GetFeatureSet(0);
auto set1 = cs.GetFeatureSet(0);
ASSERT_EQ(set0.HostVector(), set1.HostVector());
ASSERT_EQ(set0->HostVector(), set1->HostVector());
auto set2 = *cs.GetFeatureSet(1);
ASSERT_NE(set1.HostVector(), set2.HostVector());
ASSERT_EQ(set2.Size(), 32);
auto set2 = cs.GetFeatureSet(1);
ASSERT_NE(set1->HostVector(), set2->HostVector());
ASSERT_EQ(set2->Size(), 32);
// Node sampling
cs.Init(n, 0.5f, 1.0f, 0.5f);
auto set3 = *cs.GetFeatureSet(0);
ASSERT_EQ(set3.Size(), 32);
auto set3 = cs.GetFeatureSet(0);
ASSERT_EQ(set3->Size(), 32);
auto set4 = *cs.GetFeatureSet(0);
auto set4 = cs.GetFeatureSet(0);
ASSERT_NE(set3.HostVector(), set4.HostVector());
ASSERT_EQ(set4.Size(), 32);
ASSERT_NE(set3->HostVector(), set4->HostVector());
ASSERT_EQ(set4->Size(), 32);
// No level or node sampling, should be the same at different depth
cs.Init(n, 1.0f, 1.0f, 0.5f);
@ -38,11 +38,11 @@ TEST(ColumnSampler, Test) {
cs.GetFeatureSet(1)->HostVector());
cs.Init(n, 1.0f, 1.0f, 1.0f);
auto set5 = *cs.GetFeatureSet(0);
ASSERT_EQ(set5.Size(), n);
auto set5 = cs.GetFeatureSet(0);
ASSERT_EQ(set5->Size(), n);
cs.Init(n, 1.0f, 1.0f, 1.0f);
auto set6 = *cs.GetFeatureSet(0);
ASSERT_EQ(set5.HostVector(), set6.HostVector());
auto set6 = cs.GetFeatureSet(0);
ASSERT_EQ(set5->HostVector(), set6->HostVector());
// Should always be a minimum of one feature
cs.Init(n, 1e-16f, 1e-16f, 1e-16f);