Fixes and changes to the ranking metrics computed on cpu (#5380)
* - fixes and changes to the ranking metrics computed on cpu - auc/aucpr ranking metric accelerated on cpu - fixes to the auc/aucpr metrics
This commit is contained in:
parent
71a8b8c65a
commit
5dc8e894c9
@ -5,11 +5,26 @@
|
||||
#ifndef XGBOOST_METRIC_METRIC_COMMON_H_
|
||||
#define XGBOOST_METRIC_METRIC_COMMON_H_
|
||||
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
#include <limits>
|
||||
#include <string>
|
||||
|
||||
#include "../common/common.h"
|
||||
|
||||
namespace xgboost {
|
||||
namespace metric {
|
||||
|
||||
// Ranking config to be used on device and host
|
||||
struct EvalRankConfig {
|
||||
public:
|
||||
// Parsed from metric name, the top-n number of instances within a group after
|
||||
// ranking to use for evaluation.
|
||||
unsigned topn{std::numeric_limits<unsigned>::max()};
|
||||
std::string name;
|
||||
bool minus{false};
|
||||
};
|
||||
|
||||
class PackedReduceResult {
|
||||
double residue_sum_;
|
||||
double weights_sum_;
|
||||
|
||||
@ -13,9 +13,13 @@
|
||||
|
||||
#include "xgboost/host_device_vector.h"
|
||||
#include "../common/math.h"
|
||||
#include "metric_common.h"
|
||||
|
||||
namespace {
|
||||
|
||||
using PredIndPair = std::pair<xgboost::bst_float, uint32_t>;
|
||||
using PredIndPairContainer = std::vector<PredIndPair>;
|
||||
|
||||
/*
|
||||
* Adapter to access instance weights.
|
||||
*
|
||||
@ -31,9 +35,6 @@ namespace {
|
||||
* of type PredIndPairContainer
|
||||
*/
|
||||
|
||||
using PredIndPairContainer
|
||||
= std::vector<std::pair<xgboost::bst_float, unsigned>>;
|
||||
|
||||
class PerInstanceWeightPolicy {
|
||||
public:
|
||||
inline static xgboost::bst_float
|
||||
@ -91,20 +92,20 @@ struct EvalAMS : public Metric {
|
||||
using namespace std; // NOLINT(*)
|
||||
|
||||
const auto ndata = static_cast<bst_omp_uint>(info.labels_.Size());
|
||||
std::vector<std::pair<bst_float, unsigned> > rec(ndata);
|
||||
PredIndPairContainer rec(ndata);
|
||||
|
||||
const std::vector<bst_float>& h_preds = preds.HostVector();
|
||||
#pragma omp parallel for schedule(static)
|
||||
const auto &h_preds = preds.ConstHostVector();
|
||||
#pragma omp parallel for schedule(static)
|
||||
for (bst_omp_uint i = 0; i < ndata; ++i) {
|
||||
rec[i] = std::make_pair(h_preds[i], i);
|
||||
}
|
||||
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
|
||||
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
|
||||
auto ntop = static_cast<unsigned>(ratio_ * ndata);
|
||||
if (ntop == 0) ntop = ndata;
|
||||
const double br = 10.0;
|
||||
unsigned thresindex = 0;
|
||||
double s_tp = 0.0, b_fp = 0.0, tams = 0.0;
|
||||
const auto& labels = info.labels_.HostVector();
|
||||
const auto& labels = info.labels_.ConstHostVector();
|
||||
for (unsigned i = 0; i < static_cast<unsigned>(ndata-1) && i < ntop; ++i) {
|
||||
const unsigned ridx = rec[i].second;
|
||||
const bst_float wt = info.GetWeight(ridx);
|
||||
@ -139,72 +140,77 @@ struct EvalAMS : public Metric {
|
||||
float ratio_;
|
||||
};
|
||||
|
||||
/*! \brief Area Under Curve, for both classification and rank */
|
||||
/*! \brief Area Under Curve, for both classification and rank computed on CPU */
|
||||
struct EvalAuc : public Metric {
|
||||
private:
|
||||
template <typename WeightPolicy>
|
||||
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
||||
const MetaInfo &info,
|
||||
bool distributed) {
|
||||
CHECK_NE(info.labels_.Size(), 0U) << "label set cannot be empty";
|
||||
CHECK_EQ(preds.Size(), info.labels_.Size())
|
||||
<< "label size predict size not match";
|
||||
std::vector<unsigned> tgptr(2, 0);
|
||||
tgptr[1] = static_cast<unsigned>(info.labels_.Size());
|
||||
|
||||
const std::vector<unsigned> &gptr = info.group_ptr_.empty() ? tgptr : info.group_ptr_;
|
||||
CHECK_EQ(gptr.back(), info.labels_.Size())
|
||||
<< "EvalAuc: group structure must match number of prediction";
|
||||
const auto ngroup = static_cast<bst_omp_uint>(gptr.size() - 1);
|
||||
bool distributed,
|
||||
const std::vector<unsigned> &gptr) {
|
||||
const auto ngroups = static_cast<bst_omp_uint>(gptr.size() - 1);
|
||||
// sum of all AUC's across all query groups
|
||||
double sum_auc = 0.0;
|
||||
int auc_error = 0;
|
||||
// each thread takes a local rec
|
||||
std::vector<std::pair<bst_float, unsigned>> rec;
|
||||
const auto& labels = info.labels_.HostVector();
|
||||
const std::vector<bst_float>& h_preds = preds.HostVector();
|
||||
for (bst_omp_uint group_id = 0; group_id < ngroup; ++group_id) {
|
||||
rec.clear();
|
||||
for (unsigned j = gptr[group_id]; j < gptr[group_id + 1]; ++j) {
|
||||
rec.emplace_back(h_preds[j], j);
|
||||
}
|
||||
XGBOOST_PARALLEL_STABLE_SORT(rec.begin(), rec.end(), common::CmpFirst);
|
||||
// calculate AUC
|
||||
double sum_pospair = 0.0;
|
||||
double sum_npos = 0.0, sum_nneg = 0.0, buf_pos = 0.0, buf_neg = 0.0;
|
||||
for (size_t j = 0; j < rec.size(); ++j) {
|
||||
const bst_float wt
|
||||
= WeightPolicy::GetWeightOfSortedRecord(info, rec, j, group_id);
|
||||
const bst_float ctr = labels[rec[j].second];
|
||||
// keep bucketing predictions in same bucket
|
||||
if (j != 0 && rec[j].first != rec[j - 1].first) {
|
||||
sum_pospair += buf_neg * (sum_npos + buf_pos *0.5);
|
||||
sum_npos += buf_pos;
|
||||
sum_nneg += buf_neg;
|
||||
buf_neg = buf_pos = 0.0f;
|
||||
const auto& labels = info.labels_.ConstHostVector();
|
||||
const auto &h_preds = preds.ConstHostVector();
|
||||
|
||||
#pragma omp parallel reduction(+:sum_auc, auc_error) if (ngroups > 1)
|
||||
{
|
||||
// Each thread works on a distinct group and sorts the predictions in that group
|
||||
PredIndPairContainer rec;
|
||||
#pragma omp for schedule(static)
|
||||
for (bst_omp_uint group_id = 0; group_id < ngroups; ++group_id) {
|
||||
// Same thread can work on multiple groups one after another; hence, resize
|
||||
// the predictions array based on the current group
|
||||
rec.resize(gptr[group_id + 1] - gptr[group_id]);
|
||||
#pragma omp parallel for schedule(static) if (!omp_in_parallel())
|
||||
for (bst_omp_uint j = gptr[group_id]; j < gptr[group_id + 1]; ++j) {
|
||||
rec[j - gptr[group_id]] = {h_preds[j], j};
|
||||
}
|
||||
|
||||
if (omp_in_parallel()) {
|
||||
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
|
||||
} else {
|
||||
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
|
||||
}
|
||||
|
||||
// calculate AUC
|
||||
double sum_pospair = 0.0;
|
||||
double sum_npos = 0.0, sum_nneg = 0.0, buf_pos = 0.0, buf_neg = 0.0;
|
||||
for (size_t j = 0; j < rec.size(); ++j) {
|
||||
const bst_float wt = WeightPolicy::GetWeightOfSortedRecord(info, rec, j, group_id);
|
||||
const bst_float ctr = labels[rec[j].second];
|
||||
// keep bucketing predictions in same bucket
|
||||
if (j != 0 && rec[j].first != rec[j - 1].first) {
|
||||
sum_pospair += buf_neg * (sum_npos + buf_pos * 0.5);
|
||||
sum_npos += buf_pos;
|
||||
sum_nneg += buf_neg;
|
||||
buf_neg = buf_pos = 0.0f;
|
||||
}
|
||||
buf_pos += ctr * wt;
|
||||
buf_neg += (1.0f - ctr) * wt;
|
||||
}
|
||||
sum_pospair += buf_neg * (sum_npos + buf_pos * 0.5);
|
||||
sum_npos += buf_pos;
|
||||
sum_nneg += buf_neg;
|
||||
// check weird conditions
|
||||
if (sum_npos <= 0.0 || sum_nneg <= 0.0) {
|
||||
auc_error += 1;
|
||||
} else {
|
||||
// this is the AUC
|
||||
sum_auc += sum_pospair / (sum_npos * sum_nneg);
|
||||
}
|
||||
buf_pos += ctr * wt;
|
||||
buf_neg += (1.0f - ctr) * wt;
|
||||
}
|
||||
sum_pospair += buf_neg * (sum_npos + buf_pos * 0.5);
|
||||
sum_npos += buf_pos;
|
||||
sum_nneg += buf_neg;
|
||||
// check weird conditions
|
||||
if (sum_npos <= 0.0 || sum_nneg <= 0.0) {
|
||||
auc_error += 1;
|
||||
continue;
|
||||
}
|
||||
// this is the AUC
|
||||
sum_auc += sum_pospair / (sum_npos * sum_nneg);
|
||||
}
|
||||
|
||||
// Report average AUC across all groups
|
||||
// In distributed mode, workers which only contains pos or neg samples
|
||||
// will be ignored when aggregate AUC.
|
||||
bst_float dat[2] = {0.0f, 0.0f};
|
||||
if (auc_error < static_cast<int>(ngroup)) {
|
||||
if (auc_error < static_cast<int>(ngroups)) {
|
||||
dat[0] = static_cast<bst_float>(sum_auc);
|
||||
dat[1] = static_cast<bst_float>(static_cast<int>(ngroup) - auc_error);
|
||||
dat[1] = static_cast<bst_float>(static_cast<int>(ngroups) - auc_error);
|
||||
}
|
||||
if (distributed) {
|
||||
rabit::Allreduce<rabit::op::Sum>(dat, 2);
|
||||
@ -218,127 +224,133 @@ struct EvalAuc : public Metric {
|
||||
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
||||
const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
CHECK_NE(info.labels_.Size(), 0U) << "label set cannot be empty";
|
||||
CHECK_EQ(preds.Size(), info.labels_.Size())
|
||||
<< "label size predict size not match";
|
||||
std::vector<unsigned> tgptr(2, 0);
|
||||
tgptr[1] = static_cast<unsigned>(info.labels_.Size());
|
||||
|
||||
const auto &gptr = info.group_ptr_.empty() ? tgptr : info.group_ptr_;
|
||||
CHECK_EQ(gptr.back(), info.labels_.Size())
|
||||
<< "EvalAuc: group structure must match number of prediction";
|
||||
|
||||
// For ranking task, weights are per-group
|
||||
// For binary classification task, weights are per-instance
|
||||
const bool is_ranking_task =
|
||||
!info.group_ptr_.empty() && info.weights_.Size() != info.num_row_;
|
||||
|
||||
if (is_ranking_task) {
|
||||
return Eval<PerGroupWeightPolicy>(preds, info, distributed);
|
||||
return Eval<PerGroupWeightPolicy>(preds, info, distributed, gptr);
|
||||
} else {
|
||||
return Eval<PerInstanceWeightPolicy>(preds, info, distributed);
|
||||
return Eval<PerInstanceWeightPolicy>(preds, info, distributed, gptr);
|
||||
}
|
||||
}
|
||||
const char* Name() const override {
|
||||
return "auc";
|
||||
}
|
||||
|
||||
const char *Name() const override { return "auc"; }
|
||||
};
|
||||
|
||||
/*! \brief Evaluate rank list */
|
||||
struct EvalRankList : public Metric {
|
||||
struct EvalRank : public Metric, public EvalRankConfig {
|
||||
public:
|
||||
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
||||
const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
CHECK_EQ(preds.Size(), info.labels_.Size())
|
||||
<< "label size predict size not match";
|
||||
|
||||
// quick consistency when group is not available
|
||||
std::vector<unsigned> tgptr(2, 0);
|
||||
tgptr[1] = static_cast<unsigned>(preds.Size());
|
||||
const std::vector<unsigned> &gptr = info.group_ptr_.size() == 0 ? tgptr : info.group_ptr_;
|
||||
const auto &gptr = info.group_ptr_.size() == 0 ? tgptr : info.group_ptr_;
|
||||
|
||||
CHECK_NE(gptr.size(), 0U) << "must specify group when constructing rank file";
|
||||
CHECK_EQ(gptr.back(), preds.Size())
|
||||
<< "EvalRanklist: group structure must match number of prediction";
|
||||
const auto ngroup = static_cast<bst_omp_uint>(gptr.size() - 1);
|
||||
<< "EvalRank: group structure must match number of prediction";
|
||||
|
||||
const auto ngroups = static_cast<bst_omp_uint>(gptr.size() - 1);
|
||||
// sum statistics
|
||||
double sum_metric = 0.0f;
|
||||
const auto& labels = info.labels_.HostVector();
|
||||
|
||||
const std::vector<bst_float>& h_preds = preds.HostVector();
|
||||
#pragma omp parallel reduction(+:sum_metric)
|
||||
const auto &labels = info.labels_.ConstHostVector();
|
||||
const auto &h_preds = preds.ConstHostVector();
|
||||
|
||||
#pragma omp parallel reduction(+:sum_metric)
|
||||
{
|
||||
// each thread takes a local rec
|
||||
std::vector< std::pair<bst_float, unsigned> > rec;
|
||||
PredIndPairContainer rec;
|
||||
#pragma omp for schedule(static)
|
||||
for (bst_omp_uint k = 0; k < ngroup; ++k) {
|
||||
for (bst_omp_uint k = 0; k < ngroups; ++k) {
|
||||
rec.clear();
|
||||
for (unsigned j = gptr[k]; j < gptr[k + 1]; ++j) {
|
||||
rec.emplace_back(h_preds[j], static_cast<int>(labels[j]));
|
||||
}
|
||||
sum_metric += this->EvalMetric(rec);
|
||||
sum_metric += this->EvalGroup(&rec);
|
||||
}
|
||||
}
|
||||
|
||||
if (distributed) {
|
||||
bst_float dat[2];
|
||||
dat[0] = static_cast<bst_float>(sum_metric);
|
||||
dat[1] = static_cast<bst_float>(ngroup);
|
||||
dat[1] = static_cast<bst_float>(ngroups);
|
||||
// approximately estimate the metric using mean
|
||||
rabit::Allreduce<rabit::op::Sum>(dat, 2);
|
||||
return dat[0] / dat[1];
|
||||
} else {
|
||||
return static_cast<bst_float>(sum_metric) / ngroup;
|
||||
return static_cast<bst_float>(sum_metric) / ngroups;
|
||||
}
|
||||
}
|
||||
|
||||
const char* Name() const override {
|
||||
return name_.c_str();
|
||||
return name.c_str();
|
||||
}
|
||||
|
||||
protected:
|
||||
explicit EvalRankList(const char* name, const char* param) {
|
||||
explicit EvalRank(const char* name, const char* param) {
|
||||
using namespace std; // NOLINT(*)
|
||||
minus_ = false;
|
||||
|
||||
if (param != nullptr) {
|
||||
std::ostringstream os;
|
||||
if (sscanf(param, "%u[-]?", &topn_) == 1) {
|
||||
if (sscanf(param, "%u[-]?", &topn) == 1) {
|
||||
os << name << '@' << param;
|
||||
name_ = os.str();
|
||||
this->name = os.str();
|
||||
} else {
|
||||
topn_ = std::numeric_limits<unsigned>::max();
|
||||
os << name << param;
|
||||
name_ = os.str();
|
||||
this->name = os.str();
|
||||
}
|
||||
if (param[strlen(param) - 1] == '-') {
|
||||
minus_ = true;
|
||||
minus = true;
|
||||
}
|
||||
} else {
|
||||
name_ = name;
|
||||
topn_ = std::numeric_limits<unsigned>::max();
|
||||
this->name = name;
|
||||
}
|
||||
}
|
||||
/*! \return evaluation metric, given the pair_sort record, (pred,label) */
|
||||
virtual bst_float EvalMetric(std::vector<std::pair<bst_float, unsigned> > &pair_sort) const = 0; // NOLINT(*)
|
||||
|
||||
protected:
|
||||
unsigned topn_;
|
||||
std::string name_;
|
||||
bool minus_;
|
||||
virtual double EvalGroup(PredIndPairContainer *recptr) const = 0;
|
||||
};
|
||||
|
||||
/*! \brief Precision at N, for both classification and rank */
|
||||
struct EvalPrecision : public EvalRankList{
|
||||
struct EvalPrecision : public EvalRank {
|
||||
public:
|
||||
explicit EvalPrecision(const char *name) : EvalRankList("pre", name) {}
|
||||
explicit EvalPrecision(const char* name, const char* param) : EvalRank(name, param) {}
|
||||
|
||||
protected:
|
||||
bst_float EvalMetric(std::vector< std::pair<bst_float, unsigned> > &rec) const override {
|
||||
double EvalGroup(PredIndPairContainer *recptr) const override {
|
||||
PredIndPairContainer &rec(*recptr);
|
||||
// calculate Precision
|
||||
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
|
||||
unsigned nhit = 0;
|
||||
for (size_t j = 0; j < rec.size() && j < this->topn_; ++j) {
|
||||
for (size_t j = 0; j < rec.size() && j < this->topn; ++j) {
|
||||
nhit += (rec[j].second != 0);
|
||||
}
|
||||
return static_cast<bst_float>(nhit) / topn_;
|
||||
return static_cast<double>(nhit) / this->topn;
|
||||
}
|
||||
};
|
||||
|
||||
/*! \brief NDCG: Normalized Discounted Cumulative Gain at N */
|
||||
struct EvalNDCG : public EvalRankList{
|
||||
public:
|
||||
explicit EvalNDCG(const char *name) : EvalRankList("ndcg", name) {}
|
||||
|
||||
protected:
|
||||
inline bst_float CalcDCG(const std::vector<std::pair<bst_float, unsigned> > &rec) const {
|
||||
struct EvalNDCG : public EvalRank {
|
||||
private:
|
||||
double CalcDCG(const PredIndPairContainer &rec) const {
|
||||
double sumdcg = 0.0;
|
||||
for (size_t i = 0; i < rec.size() && i < this->topn_; ++i) {
|
||||
for (size_t i = 0; i < rec.size() && i < this->topn; ++i) {
|
||||
const unsigned rel = rec[i].second;
|
||||
if (rel != 0) {
|
||||
sumdcg += ((1 << rel) - 1) / std::log2(i + 2.0);
|
||||
@ -346,13 +358,18 @@ struct EvalNDCG : public EvalRankList{
|
||||
}
|
||||
return sumdcg;
|
||||
}
|
||||
virtual bst_float EvalMetric(std::vector<std::pair<bst_float, unsigned> > &rec) const { // NOLINT(*)
|
||||
XGBOOST_PARALLEL_STABLE_SORT(rec.begin(), rec.end(), common::CmpFirst);
|
||||
bst_float dcg = this->CalcDCG(rec);
|
||||
XGBOOST_PARALLEL_STABLE_SORT(rec.begin(), rec.end(), common::CmpSecond);
|
||||
bst_float idcg = this->CalcDCG(rec);
|
||||
|
||||
public:
|
||||
explicit EvalNDCG(const char* name, const char* param) : EvalRank(name, param) {}
|
||||
|
||||
double EvalGroup(PredIndPairContainer *recptr) const override {
|
||||
PredIndPairContainer &rec(*recptr);
|
||||
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
|
||||
double dcg = CalcDCG(rec);
|
||||
std::stable_sort(rec.begin(), rec.end(), common::CmpSecond);
|
||||
double idcg = CalcDCG(rec);
|
||||
if (idcg == 0.0f) {
|
||||
if (minus_) {
|
||||
if (this->minus) {
|
||||
return 0.0f;
|
||||
} else {
|
||||
return 1.0f;
|
||||
@ -363,28 +380,28 @@ struct EvalNDCG : public EvalRankList{
|
||||
};
|
||||
|
||||
/*! \brief Mean Average Precision at N, for both classification and rank */
|
||||
struct EvalMAP : public EvalRankList {
|
||||
struct EvalMAP : public EvalRank {
|
||||
public:
|
||||
explicit EvalMAP(const char *name) : EvalRankList("map", name) {}
|
||||
explicit EvalMAP(const char* name, const char* param) : EvalRank(name, param) {}
|
||||
|
||||
protected:
|
||||
bst_float EvalMetric(std::vector< std::pair<bst_float, unsigned> > &rec) const override {
|
||||
double EvalGroup(PredIndPairContainer *recptr) const override {
|
||||
PredIndPairContainer &rec(*recptr);
|
||||
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
|
||||
unsigned nhits = 0;
|
||||
double sumap = 0.0;
|
||||
for (size_t i = 0; i < rec.size(); ++i) {
|
||||
if (rec[i].second != 0) {
|
||||
nhits += 1;
|
||||
if (i < this->topn_) {
|
||||
sumap += static_cast<bst_float>(nhits) / (i + 1);
|
||||
if (i < this->topn) {
|
||||
sumap += static_cast<double>(nhits) / (i + 1);
|
||||
}
|
||||
}
|
||||
}
|
||||
if (nhits != 0) {
|
||||
sumap /= nhits;
|
||||
return static_cast<bst_float>(sumap);
|
||||
return sumap;
|
||||
} else {
|
||||
if (minus_) {
|
||||
if (this->minus) {
|
||||
return 0.0f;
|
||||
} else {
|
||||
return 1.0f;
|
||||
@ -404,12 +421,12 @@ struct EvalCox : public Metric {
|
||||
using namespace std; // NOLINT(*)
|
||||
|
||||
const auto ndata = static_cast<bst_omp_uint>(info.labels_.Size());
|
||||
const std::vector<size_t> &label_order = info.LabelAbsSort();
|
||||
const auto &label_order = info.LabelAbsSort();
|
||||
|
||||
// pre-compute a sum for the denominator
|
||||
double exp_p_sum = 0; // we use double because we might need the precision with large datasets
|
||||
|
||||
const std::vector<bst_float>& h_preds = preds.HostVector();
|
||||
const auto &h_preds = preds.ConstHostVector();
|
||||
for (omp_ulong i = 0; i < ndata; ++i) {
|
||||
exp_p_sum += h_preds[i];
|
||||
}
|
||||
@ -417,7 +434,7 @@ struct EvalCox : public Metric {
|
||||
double out = 0;
|
||||
double accumulated_sum = 0;
|
||||
bst_omp_uint num_events = 0;
|
||||
const auto& labels = info.labels_.HostVector();
|
||||
const auto& labels = info.labels_.ConstHostVector();
|
||||
for (bst_omp_uint i = 0; i < ndata; ++i) {
|
||||
const size_t ind = label_order[i];
|
||||
const auto label = labels[ind];
|
||||
@ -442,7 +459,7 @@ struct EvalCox : public Metric {
|
||||
}
|
||||
};
|
||||
|
||||
/*! \brief Area Under PR Curve, for both classification and rank */
|
||||
/*! \brief Area Under PR Curve, for both classification and rank computed on CPU */
|
||||
struct EvalAucPR : public Metric {
|
||||
// implementation of AUC-PR for weighted data
|
||||
// translated from PRROC R Package
|
||||
@ -451,72 +468,79 @@ struct EvalAucPR : public Metric {
|
||||
template <typename WeightPolicy>
|
||||
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
||||
const MetaInfo &info,
|
||||
bool distributed) {
|
||||
CHECK_NE(info.labels_.Size(), 0U) << "label set cannot be empty";
|
||||
CHECK_EQ(preds.Size(), info.labels_.Size())
|
||||
<< "label size predict size not match";
|
||||
std::vector<unsigned> tgptr(2, 0);
|
||||
tgptr[1] = static_cast<unsigned>(info.labels_.Size());
|
||||
const std::vector<unsigned> &gptr =
|
||||
info.group_ptr_.size() == 0 ? tgptr : info.group_ptr_;
|
||||
CHECK_EQ(gptr.back(), info.labels_.Size())
|
||||
<< "EvalAucPR: group structure must match number of prediction";
|
||||
const auto ngroup = static_cast<bst_omp_uint>(gptr.size() - 1);
|
||||
bool distributed,
|
||||
const std::vector<unsigned> &gptr) {
|
||||
const auto ngroups = static_cast<bst_omp_uint>(gptr.size() - 1);
|
||||
|
||||
// sum of all AUC's across all query groups
|
||||
double sum_auc = 0.0;
|
||||
int auc_error = 0;
|
||||
// each thread takes a local rec
|
||||
std::vector<std::pair<bst_float, unsigned>> rec;
|
||||
const auto& h_labels = info.labels_.HostVector();
|
||||
const std::vector<bst_float>& h_preds = preds.HostVector();
|
||||
|
||||
for (bst_omp_uint group_id = 0; group_id < ngroup; ++group_id) {
|
||||
double total_pos = 0.0;
|
||||
double total_neg = 0.0;
|
||||
rec.clear();
|
||||
for (unsigned j = gptr[group_id]; j < gptr[group_id + 1]; ++j) {
|
||||
const bst_float wt
|
||||
= WeightPolicy::GetWeightOfInstance(info, j, group_id);
|
||||
total_pos += wt * h_labels[j];
|
||||
total_neg += wt * (1.0f - h_labels[j]);
|
||||
rec.emplace_back(h_preds[j], j);
|
||||
}
|
||||
XGBOOST_PARALLEL_STABLE_SORT(rec.begin(), rec.end(), common::CmpFirst);
|
||||
// we need pos > 0 && neg > 0
|
||||
if (0.0 == total_pos || 0.0 == total_neg) {
|
||||
auc_error += 1;
|
||||
continue;
|
||||
}
|
||||
// calculate AUC
|
||||
double tp = 0.0, prevtp = 0.0, fp = 0.0, prevfp = 0.0, h = 0.0, a = 0.0, b = 0.0;
|
||||
for (size_t j = 0; j < rec.size(); ++j) {
|
||||
const bst_float wt
|
||||
= WeightPolicy::GetWeightOfSortedRecord(info, rec, j, group_id);
|
||||
tp += wt * h_labels[rec[j].second];
|
||||
fp += wt * (1.0f - h_labels[rec[j].second]);
|
||||
if ((j < rec.size() - 1 && rec[j].first != rec[j + 1].first) || j == rec.size() - 1) {
|
||||
if (tp == prevtp) {
|
||||
a = 1.0;
|
||||
b = 0.0;
|
||||
} else {
|
||||
h = (fp - prevfp) / (tp - prevtp);
|
||||
a = 1.0 + h;
|
||||
b = (prevfp - h * prevtp) / total_pos;
|
||||
}
|
||||
if (0.0 != b) {
|
||||
sum_auc += (tp / total_pos - prevtp / total_pos -
|
||||
b / a * (std::log(a * tp / total_pos + b) -
|
||||
std::log(a * prevtp / total_pos + b))) / a;
|
||||
} else {
|
||||
sum_auc += (tp / total_pos - prevtp / total_pos) / a;
|
||||
}
|
||||
prevtp = tp;
|
||||
prevfp = fp;
|
||||
const auto &h_labels = info.labels_.ConstHostVector();
|
||||
const auto &h_preds = preds.ConstHostVector();
|
||||
|
||||
#pragma omp parallel reduction(+:sum_auc, auc_error) if (ngroups > 1)
|
||||
{
|
||||
// Each thread works on a distinct group and sorts the predictions in that group
|
||||
PredIndPairContainer rec;
|
||||
#pragma omp for schedule(static)
|
||||
for (bst_omp_uint group_id = 0; group_id < ngroups; ++group_id) {
|
||||
double total_pos = 0.0;
|
||||
double total_neg = 0.0;
|
||||
// Same thread can work on multiple groups one after another; hence, resize
|
||||
// the predictions array based on the current group
|
||||
rec.resize(gptr[group_id + 1] - gptr[group_id]);
|
||||
#pragma omp parallel for schedule(static) reduction(+:total_pos, total_neg) \
|
||||
if (!omp_in_parallel()) // NOLINT
|
||||
for (bst_omp_uint j = gptr[group_id]; j < gptr[group_id + 1]; ++j) {
|
||||
const bst_float wt = WeightPolicy::GetWeightOfInstance(info, j, group_id);
|
||||
total_pos += wt * h_labels[j];
|
||||
total_neg += wt * (1.0f - h_labels[j]);
|
||||
rec[j - gptr[group_id]] = {h_preds[j], j};
|
||||
}
|
||||
|
||||
// we need pos > 0 && neg > 0
|
||||
if (total_pos <= 0.0 || total_neg <= 0.0) {
|
||||
auc_error += 1;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (omp_in_parallel()) {
|
||||
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
|
||||
} else {
|
||||
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
|
||||
}
|
||||
|
||||
// calculate AUC
|
||||
double tp = 0.0, prevtp = 0.0, fp = 0.0, prevfp = 0.0, h = 0.0, a = 0.0, b = 0.0;
|
||||
for (size_t j = 0; j < rec.size(); ++j) {
|
||||
const bst_float wt = WeightPolicy::GetWeightOfSortedRecord(info, rec, j, group_id);
|
||||
tp += wt * h_labels[rec[j].second];
|
||||
fp += wt * (1.0f - h_labels[rec[j].second]);
|
||||
if ((j < rec.size() - 1 && rec[j].first != rec[j + 1].first) || j == rec.size() - 1) {
|
||||
if (tp == prevtp) {
|
||||
a = 1.0;
|
||||
b = 0.0;
|
||||
} else {
|
||||
h = (fp - prevfp) / (tp - prevtp);
|
||||
a = 1.0 + h;
|
||||
b = (prevfp - h * prevtp) / total_pos;
|
||||
}
|
||||
if (0.0 != b) {
|
||||
sum_auc += (tp / total_pos - prevtp / total_pos -
|
||||
b / a * (std::log(a * tp / total_pos + b) -
|
||||
std::log(a * prevtp / total_pos + b))) / a;
|
||||
} else {
|
||||
sum_auc += (tp / total_pos - prevtp / total_pos) / a;
|
||||
}
|
||||
prevtp = tp;
|
||||
prevfp = fp;
|
||||
}
|
||||
}
|
||||
// sanity check
|
||||
if (tp < 0 || prevtp < 0 || fp < 0 || prevfp < 0) {
|
||||
CHECK(!auc_error) << "AUC-PR: error in calculation";
|
||||
}
|
||||
}
|
||||
// sanity check
|
||||
if (tp < 0 || prevtp < 0 || fp < 0 || prevfp < 0) {
|
||||
CHECK(!auc_error) << "AUC-PR: error in calculation";
|
||||
}
|
||||
}
|
||||
|
||||
@ -524,9 +548,9 @@ struct EvalAucPR : public Metric {
|
||||
// In distributed mode, workers which only contains pos or neg samples
|
||||
// will be ignored when aggregate AUC-PR.
|
||||
bst_float dat[2] = {0.0f, 0.0f};
|
||||
if (auc_error < static_cast<int>(ngroup)) {
|
||||
if (auc_error < static_cast<int>(ngroups)) {
|
||||
dat[0] = static_cast<bst_float>(sum_auc);
|
||||
dat[1] = static_cast<bst_float>(static_cast<int>(ngroup) - auc_error);
|
||||
dat[1] = static_cast<bst_float>(static_cast<int>(ngroups) - auc_error);
|
||||
}
|
||||
if (distributed) {
|
||||
rabit::Allreduce<rabit::op::Sum>(dat, 2);
|
||||
@ -541,20 +565,31 @@ struct EvalAucPR : public Metric {
|
||||
bst_float Eval(const HostDeviceVector<bst_float> &preds,
|
||||
const MetaInfo &info,
|
||||
bool distributed) override {
|
||||
CHECK_NE(info.labels_.Size(), 0U) << "label set cannot be empty";
|
||||
CHECK_EQ(preds.Size(), info.labels_.Size())
|
||||
<< "label size predict size not match";
|
||||
std::vector<unsigned> tgptr(2, 0);
|
||||
tgptr[1] = static_cast<unsigned>(info.labels_.Size());
|
||||
|
||||
const auto &gptr = info.group_ptr_.empty() ? tgptr : info.group_ptr_;
|
||||
CHECK_EQ(gptr.back(), info.labels_.Size())
|
||||
<< "EvalAucPR: group structure must match number of prediction";
|
||||
|
||||
// For ranking task, weights are per-group
|
||||
// For binary classification task, weights are per-instance
|
||||
const bool is_ranking_task =
|
||||
!info.group_ptr_.empty() && info.weights_.Size() != info.num_row_;
|
||||
|
||||
if (is_ranking_task) {
|
||||
return Eval<PerGroupWeightPolicy>(preds, info, distributed);
|
||||
return Eval<PerGroupWeightPolicy>(preds, info, distributed, gptr);
|
||||
} else {
|
||||
return Eval<PerInstanceWeightPolicy>(preds, info, distributed);
|
||||
return Eval<PerInstanceWeightPolicy>(preds, info, distributed, gptr);
|
||||
}
|
||||
}
|
||||
|
||||
const char *Name() const override { return "aucpr"; }
|
||||
};
|
||||
|
||||
|
||||
XGBOOST_REGISTER_METRIC(AMS, "ams")
|
||||
.describe("AMS metric for higgs.")
|
||||
.set_body([](const char* param) { return new EvalAMS(param); });
|
||||
@ -569,15 +604,15 @@ XGBOOST_REGISTER_METRIC(AucPR, "aucpr")
|
||||
|
||||
XGBOOST_REGISTER_METRIC(Precision, "pre")
|
||||
.describe("precision@k for rank.")
|
||||
.set_body([](const char* param) { return new EvalPrecision(param); });
|
||||
.set_body([](const char* param) { return new EvalPrecision("pre", param); });
|
||||
|
||||
XGBOOST_REGISTER_METRIC(NDCG, "ndcg")
|
||||
.describe("ndcg@k for rank.")
|
||||
.set_body([](const char* param) { return new EvalNDCG(param); });
|
||||
.set_body([](const char* param) { return new EvalNDCG("ndcg", param); });
|
||||
|
||||
XGBOOST_REGISTER_METRIC(MAP, "map")
|
||||
.describe("map@k for rank.")
|
||||
.set_body([](const char* param) { return new EvalMAP(param); });
|
||||
.set_body([](const char* param) { return new EvalMAP("map", param); });
|
||||
|
||||
XGBOOST_REGISTER_METRIC(Cox, "cox-nloglik")
|
||||
.describe("Negative log partial likelihood of Cox proportioanl hazards model.")
|
||||
|
||||
@ -121,11 +121,13 @@ void CheckRankingObjFunction(std::unique_ptr<xgboost::ObjFunction> const& obj,
|
||||
xgboost::bst_float GetMetricEval(xgboost::Metric * metric,
|
||||
xgboost::HostDeviceVector<xgboost::bst_float> preds,
|
||||
std::vector<xgboost::bst_float> labels,
|
||||
std::vector<xgboost::bst_float> weights) {
|
||||
std::vector<xgboost::bst_float> weights,
|
||||
std::vector<xgboost::bst_uint> groups) {
|
||||
xgboost::MetaInfo info;
|
||||
info.num_row_ = labels.size();
|
||||
info.labels_.HostVector() = labels;
|
||||
info.weights_.HostVector() = weights;
|
||||
info.group_ptr_ = groups;
|
||||
|
||||
return metric->Eval(preds, info, false);
|
||||
}
|
||||
|
||||
@ -81,7 +81,8 @@ xgboost::bst_float GetMetricEval(
|
||||
xgboost::Metric * metric,
|
||||
xgboost::HostDeviceVector<xgboost::bst_float> preds,
|
||||
std::vector<xgboost::bst_float> labels,
|
||||
std::vector<xgboost::bst_float> weights = std::vector<xgboost::bst_float> ());
|
||||
std::vector<xgboost::bst_float> weights = std::vector<xgboost::bst_float>(),
|
||||
std::vector<xgboost::bst_uint> groups = std::vector<xgboost::bst_uint>());
|
||||
|
||||
namespace xgboost {
|
||||
bool IsNear(std::vector<xgboost::bst_float>::const_iterator _beg1,
|
||||
|
||||
@ -34,6 +34,29 @@ TEST(Metric, AUC) {
|
||||
EXPECT_ANY_THROW(GetMetricEval(metric, {0, 1}, {}));
|
||||
EXPECT_ANY_THROW(GetMetricEval(metric, {0, 0}, {0, 0}));
|
||||
|
||||
// AUC with instance weights
|
||||
EXPECT_NEAR(GetMetricEval(metric,
|
||||
{0.9f, 0.1f, 0.4f, 0.3f},
|
||||
{0, 0, 1, 1},
|
||||
{1.0f, 3.0f, 2.0f, 4.0f}),
|
||||
0.75f, 0.001f);
|
||||
|
||||
// AUC for a ranking task without weights
|
||||
EXPECT_NEAR(GetMetricEval(metric,
|
||||
{0.9f, 0.1f, 0.4f, 0.3f, 0.7f},
|
||||
{0.1f, 0.2f, 0.3f, 0.4f, 0.5f},
|
||||
{},
|
||||
{0, 2, 5}),
|
||||
0.4741f, 0.001f);
|
||||
|
||||
// AUC for a ranking task with weights/group
|
||||
EXPECT_NEAR(GetMetricEval(metric,
|
||||
{0.9f, 0.1f, 0.4f, 0.3f, 0.7f},
|
||||
{0.1f, 0.2f, 0.3f, 0.4f, 0.5f},
|
||||
{1, 2},
|
||||
{0, 2, 5}),
|
||||
0.4741f, 0.001f);
|
||||
|
||||
delete metric;
|
||||
}
|
||||
|
||||
@ -58,9 +81,37 @@ TEST(Metric, AUCPR) {
|
||||
EXPECT_ANY_THROW(GetMetricEval(metric, {0, 1}, {}));
|
||||
EXPECT_ANY_THROW(GetMetricEval(metric, {0, 0}, {0, 0}));
|
||||
|
||||
// AUCPR with instance weights
|
||||
EXPECT_NEAR(GetMetricEval(
|
||||
metric, {0.29f, 0.52f, 0.11f, 0.21f, 0.219f, 0.93f, 0.493f,
|
||||
0.17f, 0.47f, 0.13f, 0.43f, 0.59f, 0.87f, 0.007f},
|
||||
{0, 0.1f, 0.2f, 0.3f, 0.4f, 0.3f, 0.1f, 0.2f, 0.4f, 0, 0.2f, 0.3f, 1, 0},
|
||||
{1, 2, 7, 4, 5, 2.2f, 3.2f, 5, 6, 1, 2, 1.1f, 3.2f, 4.5f}), // weights
|
||||
0.425919f, 0.001f);
|
||||
|
||||
// AUCPR with groups and no weights
|
||||
EXPECT_NEAR(GetMetricEval(
|
||||
metric, {0.87f, 0.31f, 0.40f, 0.42f, 0.25f, 0.66f, 0.95f,
|
||||
0.09f, 0.10f, 0.97f, 0.76f, 0.69f, 0.15f, 0.20f,
|
||||
0.30f, 0.14f, 0.07f, 0.58f, 0.61f, 0.08f},
|
||||
{0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1},
|
||||
{}, // weights
|
||||
{0, 2, 5, 9, 14, 20}), // group info
|
||||
0.556021f, 0.001f);
|
||||
|
||||
// AUCPR with groups and weights
|
||||
EXPECT_NEAR(GetMetricEval(
|
||||
metric, {0.29f, 0.52f, 0.11f, 0.21f, 0.219f, 0.93f, 0.493f,
|
||||
0.17f, 0.47f, 0.13f, 0.43f, 0.59f, 0.87f, 0.007f}, // predictions
|
||||
{0, 0.1f, 0.2f, 0.3f, 0.4f, 0.3f, 0.1f, 0.2f, 0.4f, 0, 0.2f, 0.3f, 1, 0},
|
||||
{1, 2, 7, 4, 5, 2.2f, 3.2f, 5, 6, 1, 2, 1.1f, 3.2f, 4.5f}, // weights
|
||||
{0, 2, 5, 9, 14}), // group info
|
||||
0.423391f, 0.001f);
|
||||
|
||||
delete metric;
|
||||
}
|
||||
|
||||
|
||||
TEST(Metric, Precision) {
|
||||
// When the limit for precision is not given, it takes the limit at
|
||||
// std::numeric_limits<unsigned>::max(); hence all values are very small
|
||||
@ -159,6 +210,14 @@ TEST(Metric, MAP) {
|
||||
xgboost::HostDeviceVector<xgboost::bst_float>{},
|
||||
std::vector<xgboost::bst_float>{}), 1, 1e-10);
|
||||
|
||||
// Rank metric with group info
|
||||
EXPECT_NEAR(GetMetricEval(metric,
|
||||
{0.1f, 0.9f, 0.2f, 0.8f, 0.4f, 1.7f},
|
||||
{2, 7, 1, 0, 5, 0}, // Labels
|
||||
{}, // Weights
|
||||
{0, 2, 5, 6}), // Group info
|
||||
0.8611f, 0.001f);
|
||||
|
||||
delete metric;
|
||||
metric = xgboost::Metric::Create("map@-", &tparam);
|
||||
ASSERT_STREQ(metric->Name(), "map-");
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user