Parameter validation (#5157)
* Unused code. * Split up old colmaker parameters from train param. * Fix dart. * Better name.
This commit is contained in:
parent
ced3660f60
commit
f3d7877802
@ -359,9 +359,7 @@ class Dart : public GBTree {
|
||||
|
||||
void Configure(const Args& cfg) override {
|
||||
GBTree::Configure(cfg);
|
||||
if (model_.trees.size() == 0) {
|
||||
dparam_.UpdateAllowUnknown(cfg);
|
||||
}
|
||||
dparam_.UpdateAllowUnknown(cfg);
|
||||
}
|
||||
|
||||
void SaveModel(Json *p_out) const override {
|
||||
|
||||
@ -12,7 +12,7 @@
|
||||
#include <limits>
|
||||
#include <sstream>
|
||||
#include <string>
|
||||
#include <ios>
|
||||
#include <stack>
|
||||
#include <utility>
|
||||
#include <vector>
|
||||
|
||||
@ -215,7 +215,6 @@ class LearnerImpl : public Learner {
|
||||
tparam_.dsplit = DataSplitMode::kRow;
|
||||
}
|
||||
|
||||
|
||||
// set seed only before the model is initialized
|
||||
common::GlobalRandom().seed(generic_parameters_.seed);
|
||||
// must precede configure gbm since num_features is required for gbm
|
||||
@ -231,9 +230,72 @@ class LearnerImpl : public Learner {
|
||||
obj_->ProbToMargin(mparam_.base_score));
|
||||
|
||||
this->need_configuration_ = false;
|
||||
this->ValidateParameters();
|
||||
// FIXME(trivialfis): Clear the cache once binary IO is gone.
|
||||
monitor_.Stop("Configure");
|
||||
}
|
||||
|
||||
void ValidateParameters() {
|
||||
Json config { Object() };
|
||||
this->SaveConfig(&config);
|
||||
std::stack<Json> stack;
|
||||
stack.push(config);
|
||||
std::string const postfix{"_param"};
|
||||
|
||||
auto is_parameter = [&postfix](std::string const &key) {
|
||||
return key.size() > postfix.size() &&
|
||||
std::equal(postfix.rbegin(), postfix.rend(), key.rbegin());
|
||||
};
|
||||
|
||||
// Extract all parameters
|
||||
std::vector<std::string> keys;
|
||||
while (!stack.empty()) {
|
||||
auto j_obj = stack.top();
|
||||
stack.pop();
|
||||
auto const &obj = get<Object const>(j_obj);
|
||||
|
||||
for (auto const &kv : obj) {
|
||||
if (is_parameter(kv.first)) {
|
||||
auto parameter = get<Object const>(kv.second);
|
||||
std::transform(parameter.begin(), parameter.end(), std::back_inserter(keys),
|
||||
[](std::pair<std::string const&, Json const&> const& kv) {
|
||||
return kv.first;
|
||||
});
|
||||
} else if (IsA<Object>(kv.second)) {
|
||||
stack.push(kv.second);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
std::sort(keys.begin(), keys.end());
|
||||
|
||||
std::vector<std::string> provided;
|
||||
for (auto const &kv : cfg_) {
|
||||
// `num_feature` and `num_class` are automatically added due to legacy reason.
|
||||
// `verbosity` in logger is not saved, we should move it into generic_param_.
|
||||
// FIXME(trivialfis): Make eval_metric a training parameter.
|
||||
if (kv.first != "num_feature" && kv.first != "verbosity" &&
|
||||
kv.first != "num_class" && kv.first != kEvalMetric) {
|
||||
provided.push_back(kv.first);
|
||||
}
|
||||
}
|
||||
std::sort(provided.begin(), provided.end());
|
||||
|
||||
std::vector<std::string> diff;
|
||||
std::set_difference(provided.begin(), provided.end(), keys.begin(),
|
||||
keys.end(), std::back_inserter(diff));
|
||||
if (diff.size() != 0) {
|
||||
std::stringstream ss;
|
||||
ss << "Parameters: { ";
|
||||
for (size_t i = 0; i < diff.size() - 1; ++i) {
|
||||
ss << diff[i] << ", ";
|
||||
}
|
||||
ss << diff.back();
|
||||
ss << " } are not used.";
|
||||
LOG(WARNING) << ss.str();
|
||||
}
|
||||
}
|
||||
|
||||
void CheckDataSplitMode() {
|
||||
if (rabit::IsDistributed()) {
|
||||
CHECK(tparam_.dsplit != DataSplitMode::kAuto)
|
||||
|
||||
@ -56,14 +56,10 @@ struct TrainParam : public XGBoostParameter<TrainParam> {
|
||||
float colsample_bylevel;
|
||||
// whether to subsample columns during tree construction
|
||||
float colsample_bytree;
|
||||
// speed optimization for dense column
|
||||
float opt_dense_col;
|
||||
// accuracy of sketch
|
||||
float sketch_eps;
|
||||
// accuracy of sketch
|
||||
float sketch_ratio;
|
||||
// option for parallelization
|
||||
int parallel_option;
|
||||
// option to open cacheline optimization
|
||||
bool cache_opt;
|
||||
// whether refresh updater needs to update the leaf values
|
||||
@ -160,10 +156,6 @@ struct TrainParam : public XGBoostParameter<TrainParam> {
|
||||
.set_range(0.0f, 1.0f)
|
||||
.set_default(1.0f)
|
||||
.describe("Subsample ratio of columns, resample on each tree construction.");
|
||||
DMLC_DECLARE_FIELD(opt_dense_col)
|
||||
.set_range(0.0f, 1.0f)
|
||||
.set_default(1.0f)
|
||||
.describe("EXP Param: speed optimization for dense column.");
|
||||
DMLC_DECLARE_FIELD(sketch_eps)
|
||||
.set_range(0.0f, 1.0f)
|
||||
.set_default(0.03f)
|
||||
@ -172,9 +164,6 @@ struct TrainParam : public XGBoostParameter<TrainParam> {
|
||||
.set_lower_bound(0.0f)
|
||||
.set_default(2.0f)
|
||||
.describe("EXP Param: Sketch accuracy related parameter of approximate algorithm.");
|
||||
DMLC_DECLARE_FIELD(parallel_option)
|
||||
.set_default(0)
|
||||
.describe("Different types of parallelization algorithm.");
|
||||
DMLC_DECLARE_FIELD(cache_opt)
|
||||
.set_default(true)
|
||||
.describe("EXP Param: Cache aware optimization.");
|
||||
@ -218,16 +207,7 @@ struct TrainParam : public XGBoostParameter<TrainParam> {
|
||||
DMLC_DECLARE_ALIAS(min_split_loss, gamma);
|
||||
DMLC_DECLARE_ALIAS(learning_rate, eta);
|
||||
}
|
||||
/*! \brief whether need forward small to big search: default right */
|
||||
inline bool NeedForwardSearch(float col_density, bool indicator) const {
|
||||
return this->default_direction == 2 ||
|
||||
(default_direction == 0 && (col_density < opt_dense_col) &&
|
||||
!indicator);
|
||||
}
|
||||
/*! \brief whether need backward big to small search: default left */
|
||||
inline bool NeedBackwardSearch(float col_density, bool indicator) const {
|
||||
return this->default_direction != 2;
|
||||
}
|
||||
|
||||
/*! \brief given the loss change, whether we need to invoke pruning */
|
||||
inline bool NeedPrune(double loss_chg, int depth) const {
|
||||
return loss_chg < this->min_split_loss;
|
||||
|
||||
@ -10,6 +10,7 @@
|
||||
#include <cmath>
|
||||
#include <algorithm>
|
||||
|
||||
#include "xgboost/parameter.h"
|
||||
#include "xgboost/tree_updater.h"
|
||||
#include "xgboost/logging.h"
|
||||
#include "xgboost/json.h"
|
||||
@ -24,11 +25,37 @@ namespace tree {
|
||||
|
||||
DMLC_REGISTRY_FILE_TAG(updater_colmaker);
|
||||
|
||||
struct ColMakerTrainParam : XGBoostParameter<ColMakerTrainParam> {
|
||||
// speed optimization for dense column
|
||||
float opt_dense_col;
|
||||
DMLC_DECLARE_PARAMETER(ColMakerTrainParam) {
|
||||
DMLC_DECLARE_FIELD(opt_dense_col)
|
||||
.set_range(0.0f, 1.0f)
|
||||
.set_default(1.0f)
|
||||
.describe("EXP Param: speed optimization for dense column.");
|
||||
}
|
||||
|
||||
/*! \brief whether need forward small to big search: default right */
|
||||
inline bool NeedForwardSearch(int default_direction, float col_density,
|
||||
bool indicator) const {
|
||||
return default_direction == 2 ||
|
||||
(default_direction == 0 && (col_density < opt_dense_col) &&
|
||||
!indicator);
|
||||
}
|
||||
/*! \brief whether need backward big to small search: default left */
|
||||
inline bool NeedBackwardSearch(int default_direction) const {
|
||||
return default_direction != 2;
|
||||
}
|
||||
};
|
||||
|
||||
DMLC_REGISTER_PARAMETER(ColMakerTrainParam);
|
||||
|
||||
/*! \brief column-wise update to construct a tree */
|
||||
class ColMaker: public TreeUpdater {
|
||||
public:
|
||||
void Configure(const Args& args) override {
|
||||
param_.UpdateAllowUnknown(args);
|
||||
colmaker_param_.UpdateAllowUnknown(args);
|
||||
if (!spliteval_) {
|
||||
spliteval_.reset(SplitEvaluator::Create(param_.split_evaluator));
|
||||
}
|
||||
@ -38,10 +65,12 @@ class ColMaker: public TreeUpdater {
|
||||
void LoadConfig(Json const& in) override {
|
||||
auto const& config = get<Object const>(in);
|
||||
fromJson(config.at("train_param"), &this->param_);
|
||||
fromJson(config.at("colmaker_train_param"), &this->colmaker_param_);
|
||||
}
|
||||
void SaveConfig(Json* p_out) const override {
|
||||
auto& out = *p_out;
|
||||
out["train_param"] = toJson(param_);
|
||||
out["colmaker_train_param"] = toJson(colmaker_param_);
|
||||
}
|
||||
|
||||
char const* Name() const override {
|
||||
@ -59,6 +88,7 @@ class ColMaker: public TreeUpdater {
|
||||
for (auto tree : trees) {
|
||||
Builder builder(
|
||||
param_,
|
||||
colmaker_param_,
|
||||
std::unique_ptr<SplitEvaluator>(spliteval_->GetHostClone()),
|
||||
interaction_constraints_);
|
||||
builder.Update(gpair->ConstHostVector(), dmat, tree);
|
||||
@ -69,6 +99,7 @@ class ColMaker: public TreeUpdater {
|
||||
protected:
|
||||
// training parameter
|
||||
TrainParam param_;
|
||||
ColMakerTrainParam colmaker_param_;
|
||||
// SplitEvaluator that will be cloned for each Builder
|
||||
std::unique_ptr<SplitEvaluator> spliteval_;
|
||||
|
||||
@ -102,9 +133,11 @@ class ColMaker: public TreeUpdater {
|
||||
public:
|
||||
// constructor
|
||||
explicit Builder(const TrainParam& param,
|
||||
const ColMakerTrainParam& colmaker_train_param,
|
||||
std::unique_ptr<SplitEvaluator> spliteval,
|
||||
FeatureInteractionConstraintHost _interaction_constraints)
|
||||
: param_(param), nthread_(omp_get_max_threads()),
|
||||
: param_(param), colmaker_train_param_{colmaker_train_param},
|
||||
nthread_(omp_get_max_threads()),
|
||||
spliteval_(std::move(spliteval)),
|
||||
interaction_constraints_{std::move(_interaction_constraints)} {}
|
||||
// update one tree, growing
|
||||
@ -392,7 +425,6 @@ class ColMaker: public TreeUpdater {
|
||||
std::max(static_cast<int>(num_features / this->nthread_ / 32), 1);
|
||||
#endif // defined(_OPENMP)
|
||||
|
||||
CHECK_EQ(param_.parallel_option, 0) << "Support for `parallel_option' is removed in 1.0.0";
|
||||
{
|
||||
std::vector<float> densities(num_features);
|
||||
CHECK_EQ(feat_set.size(), num_features);
|
||||
@ -408,11 +440,12 @@ class ColMaker: public TreeUpdater {
|
||||
auto c = batch[fid];
|
||||
const bool ind = c.size() != 0 && c[0].fvalue == c[c.size() - 1].fvalue;
|
||||
auto const density = densities[i];
|
||||
if (param_.NeedForwardSearch(density, ind)) {
|
||||
if (colmaker_train_param_.NeedForwardSearch(
|
||||
param_.default_direction, density, ind)) {
|
||||
this->EnumerateSplit(c.data(), c.data() + c.size(), +1,
|
||||
fid, gpair, stemp_[tid]);
|
||||
}
|
||||
if (param_.NeedBackwardSearch(density, ind)) {
|
||||
if (colmaker_train_param_.NeedBackwardSearch(param_.default_direction)) {
|
||||
this->EnumerateSplit(c.data() + c.size() - 1, c.data() - 1, -1,
|
||||
fid, gpair, stemp_[tid]);
|
||||
}
|
||||
@ -542,6 +575,7 @@ class ColMaker: public TreeUpdater {
|
||||
}
|
||||
// --data fields--
|
||||
const TrainParam& param_;
|
||||
const ColMakerTrainParam& colmaker_train_param_;
|
||||
// number of omp thread used during training
|
||||
const int nthread_;
|
||||
common::ColumnSampler column_sampler_;
|
||||
@ -581,6 +615,7 @@ class DistColMaker : public ColMaker {
|
||||
CHECK_EQ(trees.size(), 1U) << "DistColMaker: only support one tree at a time";
|
||||
Builder builder(
|
||||
param_,
|
||||
colmaker_param_,
|
||||
std::unique_ptr<SplitEvaluator>(spliteval_->GetHostClone()),
|
||||
interaction_constraints_);
|
||||
// build the tree
|
||||
@ -595,9 +630,12 @@ class DistColMaker : public ColMaker {
|
||||
class Builder : public ColMaker::Builder {
|
||||
public:
|
||||
explicit Builder(const TrainParam ¶m,
|
||||
ColMakerTrainParam const& colmaker_train_param,
|
||||
std::unique_ptr<SplitEvaluator> spliteval,
|
||||
FeatureInteractionConstraintHost _interaction_constraints)
|
||||
: ColMaker::Builder(param, std::move(spliteval), std::move(_interaction_constraints)) {}
|
||||
: ColMaker::Builder(param, colmaker_train_param,
|
||||
std::move(spliteval),
|
||||
std::move(_interaction_constraints)) {}
|
||||
inline void UpdatePosition(DMatrix* p_fmat, const RegTree &tree) {
|
||||
const auto ndata = static_cast<bst_omp_uint>(p_fmat->Info().num_row_);
|
||||
#pragma omp parallel for schedule(static)
|
||||
|
||||
@ -30,6 +30,25 @@ TEST(Learner, Basic) {
|
||||
static_assert(std::is_integral<decltype(patch)>::value, "Wrong patch version type");
|
||||
}
|
||||
|
||||
TEST(Learner, ParameterValidation) {
|
||||
size_t constexpr kRows = 1;
|
||||
size_t constexpr kCols = 1;
|
||||
auto pp_mat = CreateDMatrix(kRows, kCols, 0);
|
||||
auto& p_mat = *pp_mat;
|
||||
|
||||
auto learner = std::unique_ptr<Learner>(Learner::Create({p_mat}));
|
||||
learner->SetParam("Knock Knock", "Who's there?");
|
||||
learner->SetParam("Silence", "....");
|
||||
learner->SetParam("tree_method", "exact");
|
||||
|
||||
testing::internal::CaptureStderr();
|
||||
learner->Configure();
|
||||
std::string output = testing::internal::GetCapturedStderr();
|
||||
|
||||
ASSERT_TRUE(output.find("Parameters: { Knock Knock, Silence } are not used.") != std::string::npos);
|
||||
delete pp_mat;
|
||||
}
|
||||
|
||||
TEST(Learner, CheckGroup) {
|
||||
using Arg = std::pair<std::string, std::string>;
|
||||
size_t constexpr kNumGroups = 4;
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user