Tests for empty dmatrix. (#5159)

This commit is contained in:
Jiaming Yuan 2019-12-26 11:51:54 +08:00 committed by GitHub
parent 298ebe68ac
commit ced3660f60
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 57 additions and 41 deletions

View File

@ -6,6 +6,11 @@ import unittest
if sys.platform.startswith("win"):
pytest.skip("Skipping dask tests on Windows", allow_module_level=True)
sys.path.append("tests/python")
from test_with_dask import run_empty_dmatrix # noqa
from test_with_dask import generate_array # noqa
import testing as tm # noqa
try:
import dask.dataframe as dd
from xgboost import dask as dxgb
@ -15,10 +20,6 @@ try:
except ImportError:
pass
sys.path.append("tests/python")
from test_with_dask import generate_array # noqa
import testing as tm # noqa
class TestDistributedGPU(unittest.TestCase):
@pytest.mark.skipif(**tm.no_dask())
@ -52,42 +53,7 @@ class TestDistributedGPU(unittest.TestCase):
@pytest.mark.skipif(**tm.no_dask_cuda())
@pytest.mark.mgpu
def test_empty_dmatrix(self):
def _check_outputs(out, predictions):
assert isinstance(out['booster'], dxgb.Booster)
assert len(out['history']['validation']['rmse']) == 2
assert isinstance(predictions, np.ndarray)
assert predictions.shape[0] == 1
parameters = {'tree_method': 'gpu_hist', 'verbosity': 3,
'debug_synchronize': True}
with LocalCUDACluster() as cluster:
with Client(cluster) as client:
kRows, kCols = 1, 97
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.rand(kRows))
dtrain = dxgb.DaskDMatrix(client, X, y)
out = dxgb.train(client, parameters,
dtrain=dtrain,
evals=[(dtrain, 'validation')],
num_boost_round=2)
predictions = dxgb.predict(client=client, model=out,
data=dtrain).compute()
_check_outputs(out, predictions)
# train has more rows than evals
valid = dtrain
kRows += 1
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.rand(kRows))
dtrain = dxgb.DaskDMatrix(client, X, y)
out = dxgb.train(client, parameters,
dtrain=dtrain,
evals=[(valid, 'validation')],
num_boost_round=2)
predictions = dxgb.predict(client=client, model=out,
data=valid).compute()
_check_outputs(out, predictions)
parameters = {'tree_method': 'gpu_hist'}
run_empty_dmatrix(client, parameters)

View File

@ -122,3 +122,53 @@ def test_classifier(client):
assert prediction.ndim == 1
assert prediction.shape[0] == kRows
def run_empty_dmatrix(client, parameters):
def _check_outputs(out, predictions):
assert isinstance(out['booster'], xgb.dask.Booster)
assert len(out['history']['validation']['rmse']) == 2
assert isinstance(predictions, np.ndarray)
assert predictions.shape[0] == 1
kRows, kCols = 1, 97
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.rand(kRows))
dtrain = xgb.dask.DaskDMatrix(client, X, y)
out = xgb.dask.train(client, parameters,
dtrain=dtrain,
evals=[(dtrain, 'validation')],
num_boost_round=2)
predictions = xgb.dask.predict(client=client, model=out,
data=dtrain).compute()
_check_outputs(out, predictions)
# train has more rows than evals
valid = dtrain
kRows += 1
X = dd.from_array(np.random.randn(kRows, kCols))
y = dd.from_array(np.random.rand(kRows))
dtrain = xgb.dask.DaskDMatrix(client, X, y)
out = xgb.dask.train(client, parameters,
dtrain=dtrain,
evals=[(valid, 'validation')],
num_boost_round=2)
predictions = xgb.dask.predict(client=client, model=out,
data=valid).compute()
_check_outputs(out, predictions)
# No test for Exact, as empty DMatrix handling are mostly for distributed
# environment and Exact doesn't support it.
def test_empty_dmatrix_hist(client):
parameters = {'tree_method': 'hist'}
run_empty_dmatrix(client, parameters)
def test_empty_dmatrix_approx(client):
parameters = {'tree_method': 'approx'}
run_empty_dmatrix(client, parameters)