* Make pip install xgboost*.tar.gz work by fixing build-python.sh
* Simplify install doc
* Add test
* Install Miniconda for Linux target too
* Build XGBoost only once in sdist
* Try importing xgboost after installation
* Don't set PYTHONPATH env var for sdist test
* Turn xgboost::DataType into C++11 enum class
* New binary serialization format for DMatrix::MetaInfo
* Fix clang-tidy
* Fix c++ test
* Implement new format proposal
* Move helper functions to anonymous namespace; remove unneeded field
* Fix lint
* Add shape.
* Keep only roundtrip test.
* Fix test.
* various fixes
* Update data.cc
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
* Simplify Scikit-Learn parameter management.
* Copy base class for removing duplicated parameter signatures.
* Set all parameters to None.
* Handle None in set_param.
* Extract the doc.
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
* Simplify DropTrees calling logic
* Add `training` parameter for prediction method.
* [Breaking]: Add `training` to C API.
* Change for R and Python custom objective.
* Correct comment.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
* Fix syncing DMatrix columns.
* notes for tree method.
* Enable feature validation for all interfaces except for jvm.
* Better tests for boosting from predictions.
* Disable validation on JVM.
* Disable parameter validation for now.
Scikit-Learn passes all parameters down to XGBoost, whether they are used or
not.
* Add option `validate_parameters`.
* - implementation of map ranking algorithm
- also effected necessary suggestions mentioned in the earlier ranking pr's
- made some performance improvements to the ndcg algo as well
* Add OpenMP as CMake target
* Require CMake 3.12, to allow linking OpenMP target to objxgboost
* Specify OpenMP compiler flag for CUDA host compiler
* Require CMake 3.16+ if the OS is Mac OSX
* Use AppleClang in Mac tests.
* Update dmlc-core
* Remove `learning_rates`.
It's been deprecated since we have callback.
* Set `before_iteration` of `reset_learning_rate` to False to preserve
the initial learning rate, and comply to the term "reset".
Closes#4709.
* Tests for various `tree_method`.
* Pass pointer to model parameters.
This PR de-duplicates most of the model parameters except the one in
`tree_model.h`. One difficulty is `base_score` is a model property but can be
changed at runtime by objective function. Hence when performing model IO, we
need to save the one provided by users, instead of the one transformed by
objective. Here we created an immutable version of `LearnerModelParam` that
represents the value of model parameter after configuration.