parent
74f545bde3
commit
b915788708
@ -26,11 +26,11 @@ fi
|
||||
# Run specified test suite
|
||||
case "$suite" in
|
||||
gpu)
|
||||
pytest -v -s --fulltrace -m "(not slow) and (not mgpu)" tests/python-gpu
|
||||
pytest -v -s --fulltrace -m "not mgpu" tests/python-gpu
|
||||
;;
|
||||
|
||||
mgpu)
|
||||
pytest -v -s --fulltrace -m "(not slow) and mgpu" tests/python-gpu
|
||||
pytest -v -s --fulltrace -m "mgpu" tests/python-gpu
|
||||
cd tests/distributed
|
||||
./runtests-gpu.sh
|
||||
cd -
|
||||
|
||||
@ -3,12 +3,10 @@ from __future__ import print_function
|
||||
import numpy as np
|
||||
import unittest
|
||||
import xgboost as xgb
|
||||
import pytest
|
||||
|
||||
rng = np.random.RandomState(1994)
|
||||
|
||||
|
||||
@pytest.mark.gpu
|
||||
class TestGPUPredict(unittest.TestCase):
|
||||
def test_predict(self):
|
||||
iterations = 10
|
||||
|
||||
@ -1,86 +0,0 @@
|
||||
from __future__ import print_function
|
||||
|
||||
import sys
|
||||
import time
|
||||
import pytest
|
||||
|
||||
sys.path.append("../../tests/python")
|
||||
import xgboost as xgb
|
||||
import numpy as np
|
||||
import unittest
|
||||
|
||||
|
||||
def eprint(*args, **kwargs):
|
||||
print(*args, file=sys.stderr, **kwargs)
|
||||
sys.stderr.flush()
|
||||
print(*args, file=sys.stdout, **kwargs)
|
||||
sys.stdout.flush()
|
||||
|
||||
|
||||
rng = np.random.RandomState(1994)
|
||||
|
||||
# "realistic" size based upon http://stat-computing.org/dataexpo/2009/
|
||||
# , which has been processed to one-hot encode categoricalsxsy
|
||||
cols = 31
|
||||
# reduced to fit onto 1 gpu but still be large
|
||||
rows3 = 5000 # small
|
||||
rows2 = 4360032 # medium
|
||||
rows1 = 32360032 # large
|
||||
# rows1 = 152360032 # can do this for multi-gpu test (very large)
|
||||
rowslist = [rows1, rows2, rows3]
|
||||
|
||||
|
||||
@pytest.mark.slow
|
||||
class TestGPU(unittest.TestCase):
|
||||
def test_large(self):
|
||||
for rows in rowslist:
|
||||
eprint("Creating train data rows=%d cols=%d" % (rows, cols))
|
||||
tmp = time.time()
|
||||
np.random.seed(7)
|
||||
X = np.random.rand(rows, cols)
|
||||
y = np.random.rand(rows)
|
||||
print("Time to Create Data: %r" % (time.time() - tmp))
|
||||
|
||||
eprint("Starting DMatrix(X,y)")
|
||||
tmp = time.time()
|
||||
ag_dtrain = xgb.DMatrix(X, y, nthread=40)
|
||||
print("Time to DMatrix: %r" % (time.time() - tmp))
|
||||
|
||||
max_depth = 6
|
||||
max_bin = 1024
|
||||
|
||||
# regression test --- hist must be same as exact on
|
||||
# all-categorial data
|
||||
ag_paramb = {'max_depth': max_depth,
|
||||
'tree_method': 'hist',
|
||||
'nthread': 0,
|
||||
'eta': 1,
|
||||
'verbosity': 3,
|
||||
'objective': 'binary:logistic',
|
||||
'eval_metric': 'auc'}
|
||||
ag_param2 = {'max_depth': max_depth,
|
||||
'tree_method': 'gpu_hist',
|
||||
'nthread': 0,
|
||||
'eta': 1,
|
||||
'verbosity': 3,
|
||||
'gpu_id': 0,
|
||||
'objective': 'binary:logistic',
|
||||
'max_bin': max_bin,
|
||||
'eval_metric': 'auc'}
|
||||
ag_res = {}
|
||||
ag_resb = {}
|
||||
ag_res2 = {}
|
||||
ag_res3 = {}
|
||||
|
||||
num_rounds = 1
|
||||
tmp = time.time()
|
||||
# eprint("hist updater")
|
||||
# xgb.train(ag_paramb, ag_dtrain, num_rounds, [(ag_dtrain, 'train')],
|
||||
# evals_result=ag_resb)
|
||||
# print("Time to Train: %s seconds" % (str(time.time() - tmp)))
|
||||
|
||||
tmp = time.time()
|
||||
eprint("gpu_hist updater 1 gpu")
|
||||
xgb.train(ag_param2, ag_dtrain, num_rounds, [(ag_dtrain, 'train')],
|
||||
evals_result=ag_res2)
|
||||
print("Time to Train: %s seconds" % (str(time.time() - tmp)))
|
||||
Loading…
x
Reference in New Issue
Block a user