* Added kwargs support for Sklearn API
* Updated NEWS and CONTRIBUTORS
* Fixed CONTRIBUTORS.md
* Added clarification of **kwargs and test for proper usage
* Fixed lint error
* Fixed more lint errors and clf assigned but never used
* Fixed more lint errors
* Fixed more lint errors
* Fixed issue with changes from different branch bleeding over
* Fixed issue with changes from other branch bleeding over
* Added note that kwargs may not be compatible with Sklearn
* Fixed linting on kwargs note
* Added n_jobs and random_state to keep up to date with sklearn API.
Deprecated nthread and seed. Added tests for new params and
deprecations.
* Fixed docstring to reflect updates to n_jobs and random_state.
* Fixed whitespace issues and removed nose import.
* Added deprecation note for nthread and seed in docstring.
* Attempted fix of deprecation tests.
* Second attempted fix to tests.
* Set n_jobs to 1.
* [gblinear] add features contribution prediction; fix DumpModel bug
* [gbtree] minor changes to PredContrib
* [R] add feature contribution prediction to R
* [R] bump up version; update NEWS
* [gblinear] fix the base_margin issue; fixes#1969
* [R] list of matrices as output of multiclass feature contributions
* [gblinear] make order of DumpModel coefficients consistent: group index changes the fastest
* Fix compilation on OS X with GCC 7
Compilation failed with
In file included from src/tree/tree_updater.cc:6:0:
include/xgboost/tree_updater.h:75:46: error: 'function' is not a member of 'std'
std::function<TreeUpdater* ()> > {
caused by a missing <functional> include.
* Fixed another occurence of that issue spotted by @ClimberPG
* Add option to choose booster in scikit intreface (gbtree by default)
* Add option to choose booster in scikit intreface: complete docstring.
* Fix XGBClassifier to work with booster option
* Added test case for gblinear booster
* [R] add native routines registration
* c_api.h needs to include <cstdint> since it uses fixed width integer types
* [R] use registered native routines from R code
* [R] bump version; add info on native routine registration to the contributors guide
* make lint happy
* Add prediction of feature contributions
This implements the idea described at http://blog.datadive.net/interpreting-random-forests/
which tries to give insight in how a prediction is composed of its feature contributions
and a bias.
* Support multi-class models
* Calculate learning_rate per-tree instead of using the one from the first tree
* Do not rely on node.base_weight * learning_rate having the same value as the node mean value (aka leaf value, if it were a leaf); instead calculate them (lazily) on-the-fly
* Add simple test for contributions feature
* Check against param.num_nodes instead of checking for non-zero length
* Loop over all roots instead of only the first
* add back train method but mark as deprecated
* fix scalastyle error
* fix the persistence of XGBoostEstimator
* test persistence of a complete pipeline
* fix compilation issue
* do not allow persist custom_eval and custom_obj
* fix the failed tesl
* [R] make sure things work for a single split model; fixes#2191
* [R] add option use_int_id to xgb.model.dt.tree
* [R] add example of exporting tree plot to a file
* [R] set save_period = NULL as default in xgboost() to be the same as in xgb.train; fixes#2182
* [R] it's a good practice after CRAN releases to bump up package version in dev
* [R] allow xgb.DMatrix construction from integer dense matrices
* [R] xgb.DMatrix: silent parameter; improve documentation
* [R] xgb.model.dt.tree code style changes
* [R] update NEWS with parameter changes
* [R] code safety & style; handle non-strict matrix and inherited classes of input and model; fixes#2242
* [R] change to x.y.z.p R-package versioning scheme and set version to 0.6.4.3
* [R] add an R package versioning section to the contributors guide
* [R] R-package/README.md: clean up the redundant old installation instructions, link the contributors guide
Reported in issue #2165. Dynamic scheduling of OpenMP loops involve
implicit synchronization. To implement synchronization, libgomp uses futex
(fast userspace mutex), whereas MinGW uses kernel-space mutex, which is more
costly. With chunk size of 1, synchronization overhead may become prohibitive
on Windows machines.
Solution: use 'guided' schedule to minimize the number of syncs
Storing and then loading a model loses any eval_metric that was
provided. This causes implementations that always store/load, like
xgboost4j-spark, to be unable to eval with the desired metric.
This log appears to fire every time I ask the python package to make a prediction. It's the only log that fires from XGBoost. When we're getting predictions on millions of items a day in production, this log seems out of place.
* add back train method but mark as deprecated
* fix scalastyle error
* change class to object in examples
* fix compilation error
* small fix for cleanExternalCache
* add back train method but mark as deprecated
* fix scalastyle error
* change class to object in examples
* fix compilation error
* fix several issues in tests
* Bugfix 1: Fix segfault in multithreaded ApplySplitSparseData()
When there are more threads than rows in rowset, some threads end up
with empty ranges, causing them to crash. (iend - 1 needs to be
accessible as part of algorithm)
Fix: run only those threads with nonempty ranges.
* Add regression test for Bugfix 1
* Moving python_omp_test to existing python test group
Turns out you don't need to set "OMP_NUM_THREADS" to enable
multithreading. Just add nthread parameter.
* Bugfix 2: Fix corner case of ApplySplitSparseData() for categorical feature
When split value is less than all cut points, split_cond is set
incorrectly.
Fix: set split_cond = -1 to indicate this scenario
* Bugfix 3: Initialize data layout indicator before using it
data_layout_ is accessed before being set; this variable determines
whether feature 0 is included in feat_set.
Fix: re-order code in InitData() to initialize data_layout_ first
* Adding regression test for Bugfix 2
Unfortunately, no regression test for Bugfix 3, as there is no
way to deterministically assign value to an uninitialized variable.
* Add UpdatePredictionCache() option to updaters
Some updaters (e.g. fast_hist) has enough information to quickly compute
prediction cache for the training data. Each updater may override
UpdaterPredictionCache() method to update the prediction cache. Note: this
trick does not apply to validation data.
* Respond to code review
* Disable some debug messages by default
* Document UpdatePredictionCache() interface
* Remove base_margin logic from UpdatePredictionCache() implementation
* Do not take pointer to cfg, as reference may get stale
* Improve multi-threaded performance
* Use columnwise accessor to accelerate ApplySplit() step,
with support for a compressed representation
* Parallel sort for evaluation step
* Inline BuildHist() function
* Cache gradient pairs when building histograms in BuildHist()
* Add missing #if macro
* Respond to code review
* Use wrapper to enable parallel sort on Linux
* Fix C++ compatibility issues
* MSVC doesn't support unsigned in OpenMP loops
* gcc 4.6 doesn't support using keyword
* Fix lint issues
* Respond to code review
* Fix bug in ApplySplitSparseData()
* Attempting to read beyond the end of a sparse column
* Mishandling the case where an entire range of rows have missing values
* Fix training continuation bug
Disable UpdatePredictionCache() in the first iteration. This way, we can
accomodate the scenario where we build off of an existing (nonempty) ensemble.
* Add regression test for fast_hist
* Respond to code review
* Add back old version of ApplySplitSparseData
* Updated sklearn_parallel.py for soon-to-be-deprecated modules
* Updated predict_leaf_indices.py; Use python3 print() as other exmaples and removed unused module
This commit proposes a simpler single compiler specification for OSX and *nix. It also let's people override the setting on both systems, not just *nix.