Minor cleanup (#2342)
* Clean up demo of multiclass classification * Remove extra space
This commit is contained in:
parent
f1dc82e3e1
commit
6776292951
@ -1,22 +1,25 @@
|
||||
#! /usr/bin/python
|
||||
#!/usr/bin/python
|
||||
|
||||
from __future__ import division
|
||||
|
||||
import numpy as np
|
||||
import xgboost as xgb
|
||||
|
||||
# label need to be 0 to num_class -1
|
||||
data = np.loadtxt('./dermatology.data', delimiter=',',converters={33: lambda x:int(x == '?'), 34: lambda x:int(x)-1 } )
|
||||
data = np.loadtxt('./dermatology.data', delimiter=',',
|
||||
converters={33: lambda x:int(x == '?'), 34: lambda x:int(x)-1})
|
||||
sz = data.shape
|
||||
|
||||
train = data[:int(sz[0] * 0.7), :]
|
||||
test = data[int(sz[0] * 0.7):, :]
|
||||
|
||||
train_X = train[:,0:33]
|
||||
train_X = train[:, :33]
|
||||
train_Y = train[:, 34]
|
||||
|
||||
|
||||
test_X = test[:,0:33]
|
||||
test_X = test[:, :33]
|
||||
test_Y = test[:, 34]
|
||||
|
||||
xg_train = xgb.DMatrix( train_X, label=train_Y)
|
||||
xg_train = xgb.DMatrix(train_X, label=train_Y)
|
||||
xg_test = xgb.DMatrix(test_X, label=test_Y)
|
||||
# setup parameters for xgboost
|
||||
param = {}
|
||||
@ -29,20 +32,20 @@ param['silent'] = 1
|
||||
param['nthread'] = 4
|
||||
param['num_class'] = 6
|
||||
|
||||
watchlist = [ (xg_train,'train'), (xg_test, 'test') ]
|
||||
watchlist = [(xg_train, 'train'), (xg_test, 'test')]
|
||||
num_round = 5
|
||||
bst = xgb.train(param, xg_train, num_round, watchlist );
|
||||
bst = xgb.train(param, xg_train, num_round, watchlist)
|
||||
# get prediction
|
||||
pred = bst.predict( xg_test );
|
||||
|
||||
print ('predicting, classification error=%f' % (sum( int(pred[i]) != test_Y[i] for i in range(len(test_Y))) / float(len(test_Y)) ))
|
||||
pred = bst.predict(xg_test)
|
||||
error_rate = np.sum(pred != test_Y) / test_Y.shape[0]
|
||||
print('Test error using softmax = {}'.format(error_rate))
|
||||
|
||||
# do the same thing again, but output probabilities
|
||||
param['objective'] = 'multi:softprob'
|
||||
bst = xgb.train(param, xg_train, num_round, watchlist );
|
||||
bst = xgb.train(param, xg_train, num_round, watchlist)
|
||||
# Note: this convention has been changed since xgboost-unity
|
||||
# get prediction, this is in 1D array, need reshape to (ndata, nclass)
|
||||
yprob = bst.predict( xg_test ).reshape( test_Y.shape[0], 6 )
|
||||
ylabel = np.argmax(yprob, axis=1)
|
||||
|
||||
print ('predicting, classification error=%f' % (sum( int(ylabel[i]) != test_Y[i] for i in range(len(test_Y))) / float(len(test_Y)) ))
|
||||
pred_prob = bst.predict(xg_test).reshape(test_Y.shape[0], 6)
|
||||
pred_label = np.argmax(pred_prob, axis=1)
|
||||
error_rate = np.sum(pred != test_Y) / test_Y.shape[0]
|
||||
print('Test error using softprob = {}'.format(error_rate))
|
||||
|
||||
@ -848,7 +848,7 @@ class Booster(object):
|
||||
|
||||
def eval_set(self, evals, iteration=0, feval=None):
|
||||
# pylint: disable=invalid-name
|
||||
"""Evaluate a set of data.
|
||||
"""Evaluate a set of data.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user