Vadim Khotilovich a375ad2822 [R] maintenance Apr 2017 (#2237)
* [R] make sure things work for a single split model; fixes #2191

* [R] add option use_int_id to xgb.model.dt.tree

* [R] add example of exporting tree plot to a file

* [R] set save_period = NULL as default in xgboost() to be the same as in xgb.train; fixes #2182

* [R] it's a good practice after CRAN releases to bump up package version in dev

* [R] allow xgb.DMatrix construction from integer dense matrices

* [R] xgb.DMatrix: silent parameter; improve documentation

* [R] xgb.model.dt.tree code style changes

* [R] update NEWS with parameter changes

* [R] code safety & style; handle non-strict matrix and inherited classes of input and model; fixes #2242

* [R] change to x.y.z.p R-package versioning scheme and set version to 0.6.4.3

* [R] add an R package versioning section to the contributors guide

* [R] R-package/README.md: clean up the redundant old installation instructions, link the contributors guide
2017-05-01 22:51:34 -07:00
2017-04-17 15:28:37 -07:00
2017-05-01 22:51:34 -07:00
2017-04-25 16:37:10 -07:00
2017-04-25 16:37:10 -07:00
2016-01-16 10:24:00 -08:00
2017-03-17 09:40:34 -07:00
2017-04-25 16:37:10 -07:00
2017-04-25 16:37:10 -07:00
2016-08-17 22:50:37 -07:00
2017-03-22 16:22:15 -05:00
2017-05-01 22:51:34 -07:00
2017-04-25 16:37:10 -07:00

eXtreme Gradient Boosting

Build Status Build Status Documentation Status GitHub license CRAN Status Badge PyPI version Gitter chat for developers at https://gitter.im/dmlc/xgboost

Documentation | Resources | Installation | Release Notes | RoadMap

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

What's New

Ask a Question

Help to Make XGBoost Better

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.

License

© Contributors, 2016. Licensed under an Apache-2 license.

Reference

Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Readme 33 MiB
Languages
C++ 45.5%
Python 20.3%
Cuda 15.2%
R 6.8%
Scala 6.4%
Other 5.6%