[jvm-packages] Accept groupData in spark model eval (#2244)
* Support model evaluation for ranking tasks by accepting groupData in XGBoostModel.eval
This commit is contained in:
parent
a375ad2822
commit
ccccf8a015
@ -87,10 +87,13 @@ abstract class XGBoostModel(protected var _booster: Booster)
|
||||
* @param evalFunc the customized evaluation function, null by default to use the default metric
|
||||
* of model
|
||||
* @param iter the current iteration, -1 to be null to use customized evaluation functions
|
||||
* @param groupData group data specify each group size for ranking task. Top level corresponds
|
||||
* to partition id, second level is the group sizes.
|
||||
* @return the average metric over all partitions
|
||||
*/
|
||||
def eval(evalDataset: RDD[MLLabeledPoint], evalName: String, evalFunc: EvalTrait = null,
|
||||
iter: Int = -1, useExternalCache: Boolean = false): String = {
|
||||
iter: Int = -1, useExternalCache: Boolean = false,
|
||||
groupData: Seq[Seq[Int]] = null): String = {
|
||||
require(evalFunc != null || iter != -1, "you have to specify the value of either eval or iter")
|
||||
val broadcastBooster = evalDataset.sparkContext.broadcast(_booster)
|
||||
val broadcastUseExternalCache = evalDataset.sparkContext.broadcast($(useExternalMemory))
|
||||
@ -110,6 +113,9 @@ abstract class XGBoostModel(protected var _booster: Booster)
|
||||
}
|
||||
import DataUtils._
|
||||
val dMatrix = new DMatrix(labeledPointsPartition, cacheFileName)
|
||||
if (groupData != null) {
|
||||
dMatrix.setGroup(groupData(TaskContext.getPartitionId()).toArray)
|
||||
}
|
||||
(evalFunc, iter) match {
|
||||
case (null, _) => {
|
||||
val predStr = broadcastBooster.value.evalSet(Array(dMatrix), Array(evalName), iter)
|
||||
|
||||
@ -352,12 +352,15 @@ class XGBoostGeneralSuite extends SharedSparkContext with Utils {
|
||||
val testRDD = sc.parallelize(testSet, numSlices = 1).map(_.features)
|
||||
|
||||
val paramMap = Map("eta" -> "1", "max_depth" -> "6", "silent" -> "1",
|
||||
"objective" -> "rank:pairwise", "groupData" -> trainGroupData)
|
||||
"objective" -> "rank:pairwise", "eval_metric" -> "ndcg", "groupData" -> trainGroupData)
|
||||
|
||||
val xgBoostModel = XGBoost.trainWithRDD(trainingRDD, paramMap, 5, nWorkers = 1)
|
||||
val predRDD = xgBoostModel.predict(testRDD)
|
||||
val predResult1: Array[Array[Float]] = predRDD.collect()(0)
|
||||
assert(testRDD.count() === predResult1.length)
|
||||
|
||||
val avgMetric = xgBoostModel.eval(trainingRDD, "test", iter = 0, groupData = trainGroupData)
|
||||
assert(avgMetric contains "ndcg")
|
||||
}
|
||||
|
||||
test("test use nested groupData") {
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user