- Fix prediction range.
- Support prediction cache in mt-hist.
- Support model slicing.
- Make the booster a Python iterable by defining `__iter__`.
- Cleanup removed/deprecated parameters.
- A new field in the output model `iteration_indptr` for pointing to the ranges of trees for each iteration.
* Implement multi-target for hist.
- Add new hist tree builder.
- Move data fetchers for tests.
- Dispatch function calls in gbm base on the tree type.
* Update to C++17
* Turn off unity build
* Update CMake to 3.18
* Use MSVC 2022 + CUDA 11.8
* Re-create stack for worker images
* Allocate more disk space for Windows
* Tempiorarily disable clang-tidy
* RAPIDS now requires Python 3.10+
* Unpin cuda-python
* Use latest NCCL
* Use Ubuntu 20.04 in RMM image
* Mark failing mgpu test as xfail
* Use array interface for CSC matrix.
Use array interface for CSC matrix and align the interface with CSR and dense.
- Fix nthread issue in the R package DMatrix.
- Unify the behavior of handling `missing` with other inputs.
- Unify the behavior of handling `missing` around R, Python, Java, and Scala DMatrix.
- Expose `num_non_missing` to the JVM interface.
- Deprecate old CSR and CSC constructors.
- Group C API.
- Add C API sphinx doc.
- Consistent use of `OptionalArg` and the parameter name `config`.
- Remove call to deprecated functions in demo.
- Fix some formatting errors.
- Add links to c examples in the document (only visible with doxygen pages)
- Fix arrow.
* Generate column matrix from gHistIndex.
* Avoid synchronization with the sparse page once the cache is written.
* Cleanups: Remove member variables/functions, change the update routine to look like approx and gpu_hist.
* Remove pruner.
* Implement `MaxCategory` in quantile.
* Implement partition-based split for GPU evaluation. Currently, it's based on the existing evaluation function.
* Extract an evaluator from GPU Hist to store the needed states.
* Added some CUDA stream/event utilities.
* Update document with references.
* Fixed a bug in approx evaluator where the number of data points is less than the number of categories.
* Replace all uses of deprecated function sklearn.datasets.load_boston
* More renaming
* Fix bad name
* Update assertion
* Fix n boosted rounds.
* Avoid over regularization.
* Rebase.
* Avoid over regularization.
* Whac-a-mole
Co-authored-by: fis <jm.yuan@outlook.com>