Demo of federated learning using NVFlare (#7879)

Co-authored-by: jiamingy <jm.yuan@outlook.com>
This commit is contained in:
Rong Ou 2022-05-14 07:45:41 -07:00 committed by GitHub
parent 11e46e4bc0
commit af907e2d0d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
9 changed files with 298 additions and 14 deletions

55
demo/nvflare/README.md Normal file
View File

@ -0,0 +1,55 @@
# Experimental Support of Federated XGBoost using NVFlare
This directory contains a demo of Federated Learning using
[NVFlare](https://nvidia.github.io/NVFlare/).
To run the demo, first build XGBoost with the federated learning plugin enabled (see the
[README](../../plugin/federated/README.md)).
Install NVFlare (note that currently NVFlare only supports Python 3.8):
```shell
pip install nvflare
```
Prepare the data:
```shell
./prepare_data.sh
```
Start the NVFlare federated server:
```shell
./poc/server/startup/start.sh
```
In another terminal, start the first worker:
```shell
./poc/site-1/startup/start.sh
```
And the second worker:
```shell
./poc/site-2/startup/start.sh
```
Then start the admin CLI, using `admin/admin` as username/password:
```shell
./poc/admin/startup/fl_admin.sh
```
In the admin CLI, run the following commands:
```shell
upload_app hello-xgboost
set_run_number 1
deploy_app hello-xgboost all
start_app all
```
Once the training finishes, the model file should be written into
`./poc/site-1/run_1/test.model.json` and `./poc/site-2/run_1/test.model.json`
respectively.
Finally, shutdown everything from the admin CLI:
```shell
shutdown client
shutdown server
```

View File

@ -0,0 +1,22 @@
{
"format_version": 2,
"executors": [
{
"tasks": [
"train"
],
"executor": {
"path": "trainer.XGBoostTrainer",
"args": {
"server_address": "localhost:9091",
"world_size": 2,
"server_cert_path": "server-cert.pem",
"client_key_path": "client-key.pem",
"client_cert_path": "client-cert.pem"
}
}
}
],
"task_result_filters": [],
"task_data_filters": []
}

View File

@ -0,0 +1,22 @@
{
"format_version": 2,
"server": {
"heart_beat_timeout": 600
},
"task_data_filters": [],
"task_result_filters": [],
"workflows": [
{
"id": "server_workflow",
"path": "controller.XGBoostController",
"args": {
"port": 9091,
"world_size": 2,
"server_key_path": "server-key.pem",
"server_cert_path": "server-cert.pem",
"client_cert_path": "client-cert.pem"
}
}
],
"components": []
}

View File

@ -0,0 +1,68 @@
"""
Example of training controller with NVFlare
===========================================
"""
import multiprocessing
import xgboost.federated
from nvflare.apis.client import Client
from nvflare.apis.fl_context import FLContext
from nvflare.apis.impl.controller import Controller, Task
from nvflare.apis.shareable import Shareable
from nvflare.apis.signal import Signal
from trainer import SupportedTasks
class XGBoostController(Controller):
def __init__(self, port: int, world_size: int, server_key_path: str,
server_cert_path: str, client_cert_path: str):
"""Controller for federated XGBoost.
Args:
port: the port for the gRPC server to listen on.
world_size: the number of sites.
server_key_path: the path to the server key file.
server_cert_path: the path to the server certificate file.
client_cert_path: the path to the client certificate file.
"""
super().__init__()
self._port = port
self._world_size = world_size
self._server_key_path = server_key_path
self._server_cert_path = server_cert_path
self._client_cert_path = client_cert_path
self._server = None
def start_controller(self, fl_ctx: FLContext):
self._server = multiprocessing.Process(
target=xgboost.federated.run_federated_server,
args=(self._port, self._world_size, self._server_key_path,
self._server_cert_path, self._client_cert_path))
self._server.start()
def stop_controller(self, fl_ctx: FLContext):
if self._server:
self._server.terminate()
def process_result_of_unknown_task(self, client: Client, task_name: str,
client_task_id: str, result: Shareable,
fl_ctx: FLContext):
self.log_warning(fl_ctx, f"Unknown task: {task_name} from client {client.name}.")
def control_flow(self, abort_signal: Signal, fl_ctx: FLContext):
self.log_info(fl_ctx, "XGBoost training control flow started.")
if abort_signal.triggered:
return
task = Task(name=SupportedTasks.TRAIN, data=Shareable())
self.broadcast_and_wait(
task=task,
min_responses=self._world_size,
fl_ctx=fl_ctx,
wait_time_after_min_received=1,
abort_signal=abort_signal,
)
if abort_signal.triggered:
return
self.log_info(fl_ctx, "XGBoost training control flow finished.")

View File

@ -0,0 +1,84 @@
import os
from nvflare.apis.executor import Executor
from nvflare.apis.fl_constant import ReturnCode, FLContextKey
from nvflare.apis.fl_context import FLContext
from nvflare.apis.shareable import Shareable, make_reply
from nvflare.apis.signal import Signal
import xgboost as xgb
from xgboost import callback
class SupportedTasks(object):
TRAIN = "train"
class XGBoostTrainer(Executor):
def __init__(self, server_address: str, world_size: int, server_cert_path: str,
client_key_path: str, client_cert_path: str):
"""Trainer for federated XGBoost.
Args:
server_address: address for the gRPC server to connect to.
world_size: the number of sites.
server_cert_path: the path to the server certificate file.
client_key_path: the path to the client key file.
client_cert_path: the path to the client certificate file.
"""
super().__init__()
self._server_address = server_address
self._world_size = world_size
self._server_cert_path = server_cert_path
self._client_key_path = client_key_path
self._client_cert_path = client_cert_path
def execute(self, task_name: str, shareable: Shareable, fl_ctx: FLContext,
abort_signal: Signal) -> Shareable:
self.log_info(fl_ctx, f"Executing {task_name}")
try:
if task_name == SupportedTasks.TRAIN:
self._do_training(fl_ctx)
return make_reply(ReturnCode.OK)
else:
self.log_error(fl_ctx, f"{task_name} is not a supported task.")
return make_reply(ReturnCode.TASK_UNKNOWN)
except BaseException as e:
self.log_exception(fl_ctx,
f"Task {task_name} failed. Exception: {e.__str__()}")
return make_reply(ReturnCode.EXECUTION_EXCEPTION)
def _do_training(self, fl_ctx: FLContext):
client_name = fl_ctx.get_prop(FLContextKey.CLIENT_NAME)
rank = int(client_name.split('-')[1]) - 1
rabit_env = [
f'federated_server_address={self._server_address}',
f'federated_world_size={self._world_size}',
f'federated_rank={rank}',
f'federated_server_cert={self._server_cert_path}',
f'federated_client_key={self._client_key_path}',
f'federated_client_cert={self._client_cert_path}'
]
with xgb.rabit.RabitContext([e.encode() for e in rabit_env]):
# Load file, file will not be sharded in federated mode.
dtrain = xgb.DMatrix('agaricus.txt.train')
dtest = xgb.DMatrix('agaricus.txt.test')
# Specify parameters via map, definition are same as c++ version
param = {'max_depth': 2, 'eta': 1, 'objective': 'binary:logistic'}
# Specify validations set to watch performance
watchlist = [(dtest, 'eval'), (dtrain, 'train')]
num_round = 20
# Run training, all the features in training API is available.
bst = xgb.train(param, dtrain, num_round, evals=watchlist,
early_stopping_rounds=2, verbose_eval=False,
callbacks=[callback.EvaluationMonitor(rank=rank)])
# Save the model.
workspace = fl_ctx.get_prop(FLContextKey.WORKSPACE_OBJECT)
run_number = fl_ctx.get_prop(FLContextKey.CURRENT_RUN)
run_dir = workspace.get_run_dir(run_number)
bst.save_model(os.path.join(run_dir, "test.model.json"))
xgb.rabit.tracker_print("Finished training\n")

25
demo/nvflare/prepare_data.sh Executable file
View File

@ -0,0 +1,25 @@
#!/bin/bash
set -e
rm -fr ./agaricus* ./*.pem ./poc
world_size=2
# Generate server and client certificates.
openssl req -x509 -newkey rsa:2048 -days 7 -nodes -keyout server-key.pem -out server-cert.pem -subj "/C=US/CN=localhost"
openssl req -x509 -newkey rsa:2048 -days 7 -nodes -keyout client-key.pem -out client-cert.pem -subj "/C=US/CN=localhost"
# Split train and test files manually to simulate a federated environment.
split -n l/${world_size} --numeric-suffixes=1 -a 1 ../data/agaricus.txt.train agaricus.txt.train-site-
split -n l/${world_size} --numeric-suffixes=1 -a 1 ../data/agaricus.txt.test agaricus.txt.test-site-
poc -n 2
mkdir -p poc/admin/transfer/hello-xgboost
cp -fr config custom poc/admin/transfer/hello-xgboost
cp server-*.pem client-cert.pem poc/server/
for id in $(eval echo "{1..$world_size}"); do
cp server-cert.pem client-*.pem poc/site-"$id"/
cp agaricus.txt.train-site-"$id" poc/site-"$id"/agaricus.txt.train
cp agaricus.txt.test-site-"$id" poc/site-"$id"/agaricus.txt.test
done

View File

@ -111,9 +111,7 @@ class FederatedEngine : public IEngine {
void TrackerPrint(const std::string &msg) override {
// simply print information into the tracker
if (GetRank() == 0) {
utils::Printf("%s", msg.c_str());
}
utils::Printf("%s", msg.c_str());
}
private:

View File

@ -224,25 +224,16 @@ def _assert_dask_support() -> None:
LOGGER.warning(msg)
class RabitContext:
class RabitContext(rabit.RabitContext):
"""A context controlling rabit initialization and finalization."""
def __init__(self, args: List[bytes]) -> None:
self.args = args
super().__init__(args)
worker = distributed.get_worker()
self.args.append(
("DMLC_TASK_ID=[xgboost.dask]:" + str(worker.address)).encode()
)
def __enter__(self) -> None:
rabit.init(self.args)
assert rabit.is_distributed()
LOGGER.debug("-------------- rabit say hello ------------------")
def __exit__(self, *args: List) -> None:
rabit.finalize()
LOGGER.debug("--------------- rabit say bye ------------------")
def concat(value: Any) -> Any: # pylint: disable=too-many-return-statements
"""To be replaced with dask builtin."""

View File

@ -1,6 +1,7 @@
"""Distributed XGBoost Rabit related API."""
import ctypes
from enum import IntEnum, unique
import logging
import pickle
from typing import Any, TypeVar, Callable, Optional, cast, List, Union
@ -8,6 +9,8 @@ import numpy as np
from .core import _LIB, c_str, _check_call
LOGGER = logging.getLogger("[xgboost.rabit]")
def _init_rabit() -> None:
"""internal library initializer."""
@ -224,5 +227,21 @@ def version_number() -> int:
return ret
class RabitContext:
"""A context controlling rabit initialization and finalization."""
def __init__(self, args: List[bytes]) -> None:
self.args = args
def __enter__(self) -> None:
init(self.args)
assert is_distributed()
LOGGER.debug("-------------- rabit say hello ------------------")
def __exit__(self, *args: List) -> None:
finalize()
LOGGER.debug("--------------- rabit say bye ------------------")
# initialization script
_init_rabit()