[doc] Add demo for inference using individual tree. (#8752)

This commit is contained in:
Jiaming Yuan 2023-02-07 04:40:18 +08:00 committed by GitHub
parent 28bb01aa22
commit 7b3d473593
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 107 additions and 0 deletions

View File

@ -0,0 +1,99 @@
"""
Demo for prediction using individual trees and model slices
===========================================================
"""
import os
import numpy as np
from scipy.special import logit
from sklearn.datasets import load_svmlight_file
import xgboost as xgb
CURRENT_DIR = os.path.dirname(__file__)
train = os.path.join(CURRENT_DIR, "../data/agaricus.txt.train")
test = os.path.join(CURRENT_DIR, "../data/agaricus.txt.test")
def individual_tree() -> None:
"""Get prediction from each individual tree and combine them together."""
X_train, y_train = load_svmlight_file(train)
X_test, y_test = load_svmlight_file(test)
Xy_train = xgb.QuantileDMatrix(X_train, y_train)
n_rounds = 4
# Specify the base score, otherwise xgboost will estimate one from the training
# data.
base_score = 0.5
params = {
"max_depth": 2,
"eta": 1,
"objective": "reg:logistic",
"tree_method": "hist",
"base_score": base_score,
}
booster = xgb.train(params, Xy_train, num_boost_round=n_rounds)
# Use logit to inverse the base score back to raw leaf value (margin)
scores = np.full((X_test.shape[0],), logit(base_score))
for i in range(n_rounds):
# - Use output_margin to get raw leaf values
# - Use iteration_range to get prediction for only one tree
# - Use previous prediction as base marign for the model
Xy_test = xgb.DMatrix(X_test, base_margin=scores)
if i == n_rounds - 1:
# last round, get the transformed prediction
scores = booster.predict(
Xy_test, iteration_range=(i, i + 1), output_margin=False
)
else:
# get raw leaf value for accumulation
scores = booster.predict(
Xy_test, iteration_range=(i, i + 1), output_margin=True
)
full = booster.predict(xgb.DMatrix(X_test), output_margin=False)
np.testing.assert_allclose(scores, full)
def model_slices() -> None:
"""Inference with each individual using model slices."""
X_train, y_train = load_svmlight_file(train)
X_test, y_test = load_svmlight_file(test)
Xy_train = xgb.QuantileDMatrix(X_train, y_train)
n_rounds = 4
# Specify the base score, otherwise xgboost will estimate one from the training
# data.
base_score = 0.5
params = {
"max_depth": 2,
"eta": 1,
"objective": "reg:logistic",
"tree_method": "hist",
"base_score": base_score,
}
booster = xgb.train(params, Xy_train, num_boost_round=n_rounds)
trees = [booster[t] for t in range(n_rounds)]
# Use logit to inverse the base score back to raw leaf value (margin)
scores = np.full((X_test.shape[0],), logit(base_score))
for i, t in enumerate(trees):
# Feed previous scores into base margin.
Xy_test = xgb.DMatrix(X_test, base_margin=scores)
if i == n_rounds - 1:
# last round, get the transformed prediction
scores = t.predict(Xy_test, output_margin=False)
else:
# get raw leaf value for accumulation
scores = t.predict(Xy_test, output_margin=True)
full = booster.predict(xgb.DMatrix(X_test), output_margin=False)
np.testing.assert_allclose(scores, full)
if __name__ == "__main__":
individual_tree()
model_slices()

View File

@ -150,6 +150,7 @@ def main(args: argparse.Namespace) -> None:
"demo/guide-python/feature_weights.py",
"demo/guide-python/sklearn_parallel.py",
"demo/guide-python/spark_estimator_examples.py",
"demo/guide-python/individual_trees.py",
# CI
"tests/ci_build/lint_python.py",
"tests/ci_build/test_r_package.py",
@ -191,6 +192,7 @@ def main(args: argparse.Namespace) -> None:
"demo/guide-python/external_memory.py",
"demo/guide-python/cat_in_the_dat.py",
"demo/guide-python/feature_weights.py",
"demo/guide-python/individual_trees.py",
# tests
"tests/python/test_dt.py",
"tests/python/test_data_iterator.py",

View File

@ -79,6 +79,12 @@ def test_predict_first_ntree_demo():
subprocess.check_call(cmd)
def test_individual_trees():
script = os.path.join(PYTHON_DEMO_DIR, 'individual_trees.py')
cmd = ['python', script]
subprocess.check_call(cmd)
def test_predict_leaf_indices_demo():
script = os.path.join(PYTHON_DEMO_DIR, 'predict_leaf_indices.py')
cmd = ['python', script]