[doc] Update for prediction. (#7648)
This commit is contained in:
parent
0d0abe1845
commit
0da7d872ef
@ -16,7 +16,9 @@ bst = xgb.train(param, dtrain, num_round, watchlist)
|
||||
|
||||
print('start testing predict the leaf indices')
|
||||
# predict using first 2 tree
|
||||
leafindex = bst.predict(dtest, ntree_limit=2, pred_leaf=True)
|
||||
leafindex = bst.predict(
|
||||
dtest, iteration_range=(0, 2), pred_leaf=True, strict_shape=True
|
||||
)
|
||||
print(leafindex.shape)
|
||||
print(leafindex)
|
||||
# predict all trees
|
||||
|
||||
@ -267,12 +267,12 @@ Additional parameters for Dart Booster (``booster=dart``)
|
||||
|
||||
If the booster object is DART type, ``predict()`` will perform dropouts, i.e. only
|
||||
some of the trees will be evaluated. This will produce incorrect results if ``data`` is
|
||||
not the training data. To obtain correct results on test sets, set ``ntree_limit`` to
|
||||
not the training data. To obtain correct results on test sets, set ``iteration_range`` to
|
||||
a nonzero value, e.g.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
preds = bst.predict(dtest, ntree_limit=num_round)
|
||||
preds = bst.predict(dtest, iteration_range=(0, num_round))
|
||||
|
||||
* ``sample_type`` [default= ``uniform``]
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user