[doc] Update for prediction. (#7648)

This commit is contained in:
Jiaming Yuan 2022-02-15 05:01:55 +08:00 committed by GitHub
parent 0d0abe1845
commit 0da7d872ef
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 5 additions and 3 deletions

View File

@ -16,7 +16,9 @@ bst = xgb.train(param, dtrain, num_round, watchlist)
print('start testing predict the leaf indices')
# predict using first 2 tree
leafindex = bst.predict(dtest, ntree_limit=2, pred_leaf=True)
leafindex = bst.predict(
dtest, iteration_range=(0, 2), pred_leaf=True, strict_shape=True
)
print(leafindex.shape)
print(leafindex)
# predict all trees

View File

@ -267,12 +267,12 @@ Additional parameters for Dart Booster (``booster=dart``)
If the booster object is DART type, ``predict()`` will perform dropouts, i.e. only
some of the trees will be evaluated. This will produce incorrect results if ``data`` is
not the training data. To obtain correct results on test sets, set ``ntree_limit`` to
not the training data. To obtain correct results on test sets, set ``iteration_range`` to
a nonzero value, e.g.
.. code-block:: python
preds = bst.predict(dtest, ntree_limit=num_round)
preds = bst.predict(dtest, iteration_range=(0, num_round))
* ``sample_type`` [default= ``uniform``]