Require isort on all Python files. (#8420)
This commit is contained in:
parent
bf8de227a9
commit
0d3da9869c
@ -1,7 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import sys
|
||||
import random
|
||||
import sys
|
||||
|
||||
if len(sys.argv) < 2:
|
||||
print ('Usage:<filename> <k> [nfold = 5]')
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import sys
|
||||
import random
|
||||
import sys
|
||||
|
||||
if len(sys.argv) < 2:
|
||||
print('Usage:<filename> <k> [nfold = 5]')
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
import sys
|
||||
|
||||
fo = open(sys.argv[2], 'w')
|
||||
|
||||
for l in open(sys.argv[1]):
|
||||
|
||||
@ -6,9 +6,11 @@ Demo for survival analysis (regression). using Accelerated Failure Time (AFT) mo
|
||||
"""
|
||||
|
||||
import os
|
||||
from sklearn.model_selection import ShuffleSplit
|
||||
import pandas as pd
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import ShuffleSplit
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
# The Veterans' Administration Lung Cancer Trial
|
||||
|
||||
@ -6,11 +6,12 @@ Demo for survival analysis (regression) using Accelerated Failure Time (AFT) mod
|
||||
using Optuna to tune hyperparameters
|
||||
|
||||
"""
|
||||
from sklearn.model_selection import ShuffleSplit
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import xgboost as xgb
|
||||
import optuna
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import ShuffleSplit
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
# The Veterans' Administration Lung Cancer Trial
|
||||
# The Statistical Analysis of Failure Time Data by Kalbfleisch J. and Prentice R (1980)
|
||||
|
||||
@ -6,9 +6,10 @@ This demo uses 1D toy data and visualizes how XGBoost fits a tree ensemble. The
|
||||
model starts out as a flat line and evolves into a step function in order to account for
|
||||
all ranged labels.
|
||||
"""
|
||||
import numpy as np
|
||||
import xgboost as xgb
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
plt.rcParams.update({'font.size': 13})
|
||||
|
||||
|
||||
@ -4,12 +4,14 @@ Example of training survival model with Dask on CPU
|
||||
|
||||
"""
|
||||
|
||||
import xgboost as xgb
|
||||
import os
|
||||
from xgboost.dask import DaskDMatrix
|
||||
|
||||
import dask.dataframe as dd
|
||||
from dask.distributed import Client
|
||||
from dask.distributed import LocalCluster
|
||||
from dask.distributed import Client, LocalCluster
|
||||
from xgboost.dask import DaskDMatrix
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
|
||||
def main(client):
|
||||
# Load an example survival data from CSV into a Dask data frame.
|
||||
|
||||
@ -3,11 +3,11 @@ Example of training with Dask on CPU
|
||||
====================================
|
||||
|
||||
"""
|
||||
import xgboost as xgb
|
||||
from xgboost.dask import DaskDMatrix
|
||||
from dask.distributed import Client
|
||||
from dask.distributed import LocalCluster
|
||||
from dask import array as da
|
||||
from dask.distributed import Client, LocalCluster
|
||||
from xgboost.dask import DaskDMatrix
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
|
||||
def main(client):
|
||||
|
||||
@ -3,12 +3,12 @@ Example of using callbacks with Dask
|
||||
====================================
|
||||
"""
|
||||
import numpy as np
|
||||
import xgboost as xgb
|
||||
from xgboost.dask import DaskDMatrix
|
||||
from dask.distributed import Client
|
||||
from dask.distributed import LocalCluster
|
||||
from dask.distributed import Client, LocalCluster
|
||||
from dask_ml.datasets import make_regression
|
||||
from dask_ml.model_selection import train_test_split
|
||||
from xgboost.dask import DaskDMatrix
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
|
||||
def probability_for_going_backward(epoch):
|
||||
|
||||
@ -2,14 +2,15 @@
|
||||
Example of training with Dask on GPU
|
||||
====================================
|
||||
"""
|
||||
from dask_cuda import LocalCUDACluster
|
||||
import dask_cudf
|
||||
from dask.distributed import Client
|
||||
from dask import array as da
|
||||
from dask import dataframe as dd
|
||||
from dask.distributed import Client
|
||||
from dask_cuda import LocalCUDACluster
|
||||
from xgboost.dask import DaskDMatrix
|
||||
|
||||
import xgboost as xgb
|
||||
from xgboost import dask as dxgb
|
||||
from xgboost.dask import DaskDMatrix
|
||||
|
||||
|
||||
def using_dask_matrix(client: Client, X, y):
|
||||
|
||||
@ -2,9 +2,9 @@
|
||||
Use scikit-learn regressor interface with CPU histogram tree method
|
||||
===================================================================
|
||||
"""
|
||||
from dask.distributed import Client
|
||||
from dask.distributed import LocalCluster
|
||||
from dask import array as da
|
||||
from dask.distributed import Client, LocalCluster
|
||||
|
||||
import xgboost
|
||||
|
||||
|
||||
|
||||
@ -3,10 +3,12 @@ Use scikit-learn regressor interface with GPU histogram tree method
|
||||
===================================================================
|
||||
"""
|
||||
|
||||
from dask import array as da
|
||||
from dask.distributed import Client
|
||||
|
||||
# It's recommended to use dask_cuda for GPU assignment
|
||||
from dask_cuda import LocalCUDACluster
|
||||
from dask import array as da
|
||||
|
||||
import xgboost
|
||||
|
||||
|
||||
|
||||
@ -1,7 +1,9 @@
|
||||
import xgboost as xgb
|
||||
import time
|
||||
|
||||
from sklearn.datasets import fetch_covtype
|
||||
from sklearn.model_selection import train_test_split
|
||||
import time
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
# Fetch dataset using sklearn
|
||||
cov = fetch_covtype()
|
||||
|
||||
@ -9,13 +9,14 @@ interfaces in the Python package like scikit-learn interface and Dask interface.
|
||||
See :doc:`/python/python_intro` and :doc:`/tutorials/index` for other references.
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
import pickle
|
||||
import xgboost as xgb
|
||||
import os
|
||||
import pickle
|
||||
|
||||
import numpy as np
|
||||
from sklearn.datasets import load_svmlight_file
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
# Make sure the demo knows where to load the data.
|
||||
CURRENT_DIR = os.path.dirname(os.path.abspath(__file__))
|
||||
XGBOOST_ROOT_DIR = os.path.dirname(os.path.dirname(CURRENT_DIR))
|
||||
|
||||
@ -3,8 +3,8 @@ Demo for boosting from prediction
|
||||
=================================
|
||||
"""
|
||||
import os
|
||||
import xgboost as xgb
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
CURRENT_DIR = os.path.dirname(__file__)
|
||||
dtrain = xgb.DMatrix(os.path.join(CURRENT_DIR, '../data/agaricus.txt.train'))
|
||||
|
||||
@ -4,14 +4,16 @@ Demo for using and defining callback functions
|
||||
|
||||
.. versionadded:: 1.3.0
|
||||
'''
|
||||
import xgboost as xgb
|
||||
import tempfile
|
||||
import argparse
|
||||
import os
|
||||
import tempfile
|
||||
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn.datasets import load_breast_cancer
|
||||
from sklearn.model_selection import train_test_split
|
||||
from matplotlib import pyplot as plt
|
||||
import argparse
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
|
||||
class Plotting(xgb.callback.TrainingCallback):
|
||||
|
||||
@ -3,11 +3,13 @@ Demo for training continuation
|
||||
==============================
|
||||
"""
|
||||
|
||||
from sklearn.datasets import load_breast_cancer
|
||||
import xgboost
|
||||
import os
|
||||
import pickle
|
||||
import tempfile
|
||||
import os
|
||||
|
||||
from sklearn.datasets import load_breast_cancer
|
||||
|
||||
import xgboost
|
||||
|
||||
|
||||
def training_continuation(tmpdir: str, use_pickle: bool) -> None:
|
||||
|
||||
@ -3,7 +3,9 @@ Demo for using cross validation
|
||||
===============================
|
||||
"""
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
# load data in do training
|
||||
|
||||
@ -14,14 +14,16 @@ The `SLE` objective reduces impact of outliers in training dataset, hence here w
|
||||
compare its performance with standard squared error.
|
||||
|
||||
"""
|
||||
import numpy as np
|
||||
import xgboost as xgb
|
||||
from typing import Tuple, Dict, List
|
||||
from time import time
|
||||
import argparse
|
||||
from time import time
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import matplotlib
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
# shape of generated data.
|
||||
kRows = 4096
|
||||
kCols = 16
|
||||
|
||||
@ -10,11 +10,13 @@ See :doc:`/tutorials/custom_metric_obj` for detailed tutorial and notes.
|
||||
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import xgboost as xgb
|
||||
from matplotlib import pyplot as plt
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
np.random.seed(1994)
|
||||
|
||||
kRows = 100
|
||||
|
||||
@ -3,6 +3,7 @@ This script demonstrate how to access the eval metrics
|
||||
======================================================
|
||||
"""
|
||||
import os
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
CURRENT_DIR = os.path.dirname(__file__)
|
||||
|
||||
@ -12,11 +12,13 @@ See :doc:`the tutorial </tutorials/external_memory>` for more details.
|
||||
|
||||
"""
|
||||
import os
|
||||
import xgboost
|
||||
from typing import Callable, List, Tuple
|
||||
from sklearn.datasets import make_regression
|
||||
import tempfile
|
||||
from typing import Callable, List, Tuple
|
||||
|
||||
import numpy as np
|
||||
from sklearn.datasets import make_regression
|
||||
|
||||
import xgboost
|
||||
|
||||
|
||||
def make_batches(
|
||||
|
||||
@ -5,11 +5,13 @@ Demo for using feature weight to change column sampling
|
||||
.. versionadded:: 1.3.0
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import xgboost
|
||||
from matplotlib import pyplot as plt
|
||||
import argparse
|
||||
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
import xgboost
|
||||
|
||||
|
||||
def main(args):
|
||||
rng = np.random.RandomState(1994)
|
||||
|
||||
@ -2,9 +2,10 @@
|
||||
Demo for gamma regression
|
||||
=========================
|
||||
"""
|
||||
import xgboost as xgb
|
||||
import numpy as np
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
# this script demonstrates how to fit gamma regression model (with log link function)
|
||||
# in xgboost, before running the demo you need to generate the autoclaims dataset
|
||||
# by running gen_autoclaims.R located in xgboost/demo/data.
|
||||
|
||||
@ -3,7 +3,9 @@ Demo for GLM
|
||||
============
|
||||
"""
|
||||
import os
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
##
|
||||
# this script demonstrate how to fit generalized linear model in xgboost
|
||||
# basically, we are using linear model, instead of tree for our boosters
|
||||
|
||||
@ -10,10 +10,11 @@ See :doc:`/tutorials/multioutput` for more information.
|
||||
"""
|
||||
|
||||
import argparse
|
||||
from typing import Dict, Tuple, List
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
import numpy as np
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
|
||||
|
||||
@ -3,10 +3,12 @@ Demo for prediction using number of trees
|
||||
=========================================
|
||||
"""
|
||||
import os
|
||||
|
||||
import numpy as np
|
||||
import xgboost as xgb
|
||||
from sklearn.datasets import load_svmlight_file
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
CURRENT_DIR = os.path.dirname(__file__)
|
||||
train = os.path.join(CURRENT_DIR, "../data/agaricus.txt.train")
|
||||
test = os.path.join(CURRENT_DIR, "../data/agaricus.txt.test")
|
||||
|
||||
@ -3,6 +3,7 @@ Demo for obtaining leaf index
|
||||
=============================
|
||||
"""
|
||||
import os
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
# load data in do training
|
||||
|
||||
@ -17,10 +17,11 @@ using `itertools.tee` might incur significant memory usage according to:
|
||||
|
||||
'''
|
||||
|
||||
import xgboost
|
||||
import cupy
|
||||
import numpy
|
||||
|
||||
import xgboost
|
||||
|
||||
COLS = 64
|
||||
ROWS_PER_BATCH = 1000 # data is splited by rows
|
||||
BATCHES = 32
|
||||
|
||||
@ -3,10 +3,11 @@ Demo for accessing the xgboost eval metrics by using sklearn interface
|
||||
======================================================================
|
||||
"""
|
||||
|
||||
import xgboost as xgb
|
||||
import numpy as np
|
||||
from sklearn.datasets import make_hastie_10_2
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
X, y = make_hastie_10_2(n_samples=2000, random_state=42)
|
||||
|
||||
# Map labels from {-1, 1} to {0, 1}
|
||||
|
||||
@ -7,12 +7,13 @@ Created on 1 Apr 2015
|
||||
@author: Jamie Hall
|
||||
'''
|
||||
import pickle
|
||||
import xgboost as xgb
|
||||
|
||||
import numpy as np
|
||||
from sklearn.model_selection import KFold, train_test_split, GridSearchCV
|
||||
from sklearn.datasets import fetch_california_housing, load_digits, load_iris
|
||||
from sklearn.metrics import confusion_matrix, mean_squared_error
|
||||
from sklearn.datasets import load_iris, load_digits, fetch_california_housing
|
||||
from sklearn.model_selection import GridSearchCV, KFold, train_test_split
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
rng = np.random.RandomState(31337)
|
||||
|
||||
|
||||
@ -2,11 +2,13 @@
|
||||
Demo for using xgboost with sklearn
|
||||
===================================
|
||||
"""
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
from sklearn.datasets import fetch_california_housing
|
||||
import xgboost as xgb
|
||||
import multiprocessing
|
||||
|
||||
from sklearn.datasets import fetch_california_housing
|
||||
from sklearn.model_selection import GridSearchCV
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
if __name__ == "__main__":
|
||||
print("Parallel Parameter optimization")
|
||||
X, y = fetch_california_housing(return_X_y=True)
|
||||
|
||||
@ -7,9 +7,10 @@ experiment.
|
||||
|
||||
"""
|
||||
|
||||
import xgboost as xgb
|
||||
from sklearn.datasets import fetch_california_housing
|
||||
import numpy as np
|
||||
from sklearn.datasets import fetch_california_housing
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
|
||||
def main():
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
#!/usr/bin/python
|
||||
import numpy as np
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
### load data in do training
|
||||
|
||||
@ -1,6 +1,7 @@
|
||||
#!/usr/bin/python
|
||||
# make prediction
|
||||
import numpy as np
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
# path to where the data lies
|
||||
|
||||
@ -1,9 +1,12 @@
|
||||
#!/usr/bin/python
|
||||
# this is the example script to use xgboost to train
|
||||
import numpy as np
|
||||
import xgboost as xgb
|
||||
from sklearn.ensemble import GradientBoostingClassifier
|
||||
import time
|
||||
|
||||
import numpy as np
|
||||
from sklearn.ensemble import GradientBoostingClassifier
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
test_size = 550000
|
||||
|
||||
# path to where the data lies
|
||||
|
||||
@ -3,6 +3,7 @@
|
||||
from __future__ import division
|
||||
|
||||
import numpy as np
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
# label need to be 0 to num_class -1
|
||||
|
||||
@ -10,7 +10,6 @@ from nvflare.apis.fl_context import FLContext
|
||||
from nvflare.apis.impl.controller import Controller, Task
|
||||
from nvflare.apis.shareable import Shareable
|
||||
from nvflare.apis.signal import Signal
|
||||
|
||||
from trainer import SupportedTasks
|
||||
|
||||
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
import os
|
||||
|
||||
from nvflare.apis.executor import Executor
|
||||
from nvflare.apis.fl_constant import ReturnCode, FLContextKey
|
||||
from nvflare.apis.fl_constant import FLContextKey, ReturnCode
|
||||
from nvflare.apis.fl_context import FLContext
|
||||
from nvflare.apis.shareable import Shareable, make_reply
|
||||
from nvflare.apis.signal import Signal
|
||||
|
||||
@ -1,8 +1,8 @@
|
||||
#!/usr/bin/python
|
||||
import xgboost as xgb
|
||||
from xgboost import DMatrix
|
||||
from sklearn.datasets import load_svmlight_file
|
||||
|
||||
import xgboost as xgb
|
||||
from xgboost import DMatrix
|
||||
|
||||
# This script demonstrate how to do ranking with xgboost.train
|
||||
x_train, y_train = load_svmlight_file("mq2008.train")
|
||||
|
||||
@ -1,7 +1,8 @@
|
||||
#!/usr/bin/python
|
||||
import xgboost as xgb
|
||||
from sklearn.datasets import load_svmlight_file
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
# This script demonstrate how to do ranking with XGBRanker
|
||||
x_train, y_train = load_svmlight_file("mq2008.train")
|
||||
x_valid, y_valid = load_svmlight_file("mq2008.vali")
|
||||
|
||||
@ -1,5 +1,6 @@
|
||||
import sys
|
||||
|
||||
|
||||
def save_data(group_data,output_feature,output_group):
|
||||
if len(group_data) == 0:
|
||||
return
|
||||
|
||||
@ -1,8 +1,9 @@
|
||||
import xgboost as xgb
|
||||
from sklearn.datasets import make_classification
|
||||
import dask
|
||||
from dask.distributed import Client
|
||||
from dask_cuda import LocalCUDACluster
|
||||
from sklearn.datasets import make_classification
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
|
||||
def main(client):
|
||||
|
||||
@ -1,7 +1,8 @@
|
||||
import xgboost as xgb
|
||||
import rmm
|
||||
from sklearn.datasets import make_classification
|
||||
|
||||
import xgboost as xgb
|
||||
|
||||
# Initialize RMM pool allocator
|
||||
rmm.reinitialize(pool_allocator=True)
|
||||
# Optionally force XGBoost to use RMM for all GPU memory allocation, see ./README.md
|
||||
|
||||
@ -1,16 +1,17 @@
|
||||
import re
|
||||
import os
|
||||
import sys
|
||||
import platform
|
||||
import errno
|
||||
import argparse
|
||||
import subprocess
|
||||
import errno
|
||||
import glob
|
||||
import os
|
||||
import platform
|
||||
import re
|
||||
import shutil
|
||||
import subprocess
|
||||
import sys
|
||||
import tempfile
|
||||
import zipfile
|
||||
from urllib.request import urlretrieve
|
||||
from contextlib import contextmanager
|
||||
from urllib.request import urlretrieve
|
||||
|
||||
|
||||
def normpath(path):
|
||||
"""Normalize UNIX path to a native path."""
|
||||
|
||||
@ -1,10 +1,11 @@
|
||||
"""Query list of all contributors and reviewers in a release"""
|
||||
|
||||
from sh.contrib import git
|
||||
import sys
|
||||
import re
|
||||
import requests
|
||||
import json
|
||||
import re
|
||||
import sys
|
||||
|
||||
import requests
|
||||
from sh.contrib import git
|
||||
|
||||
if len(sys.argv) != 5:
|
||||
print(f'Usage: {sys.argv[0]} [starting commit/tag] [ending commit/tag] [GitHub username] ' +
|
||||
|
||||
@ -2,14 +2,15 @@
|
||||
|
||||
tqdm, sh are required to run this script.
|
||||
"""
|
||||
from urllib.request import urlretrieve
|
||||
import argparse
|
||||
from typing import List, Optional
|
||||
from sh.contrib import git
|
||||
from packaging import version
|
||||
import subprocess
|
||||
import tqdm
|
||||
import os
|
||||
import subprocess
|
||||
from typing import List, Optional
|
||||
from urllib.request import urlretrieve
|
||||
|
||||
import tqdm
|
||||
from packaging import version
|
||||
from sh.contrib import git
|
||||
|
||||
# The package building is managed by Jenkins CI.
|
||||
PREFIX = "https://s3-us-west-2.amazonaws.com/xgboost-nightly-builds/release_"
|
||||
|
||||
13
doc/conf.py
13
doc/conf.py
@ -11,14 +11,15 @@
|
||||
#
|
||||
# All configuration values have a default; values that are commented out
|
||||
# serve to show the default.
|
||||
from subprocess import call
|
||||
from sh.contrib import git
|
||||
import urllib.request
|
||||
from urllib.error import HTTPError
|
||||
import sys
|
||||
import re
|
||||
import os
|
||||
import re
|
||||
import subprocess
|
||||
import sys
|
||||
import urllib.request
|
||||
from subprocess import call
|
||||
from urllib.error import HTTPError
|
||||
|
||||
from sh.contrib import git
|
||||
|
||||
git_branch = os.getenv('SPHINX_GIT_BRANCH', default=None)
|
||||
if not git_branch:
|
||||
|
||||
@ -1,8 +1,8 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""Helper utility function for customization."""
|
||||
import sys
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
|
||||
READTHEDOCS_BUILD = (os.environ.get('READTHEDOCS', None) is not None)
|
||||
|
||||
|
||||
@ -1,13 +1,14 @@
|
||||
"""Setup xgboost package."""
|
||||
import logging
|
||||
import os
|
||||
import shutil
|
||||
import subprocess
|
||||
import logging
|
||||
from typing import Optional, List
|
||||
import sys
|
||||
from platform import system
|
||||
from setuptools import setup, find_packages, Extension
|
||||
from setuptools.command import build_ext, sdist, install_lib, install
|
||||
from typing import List, Optional
|
||||
|
||||
from setuptools import Extension, find_packages, setup
|
||||
from setuptools.command import build_ext, install, install_lib, sdist
|
||||
|
||||
# You can't use `pip install .` as pip copies setup.py to a temporary
|
||||
# directory, parent directory is no longer reachable (isolated build) .
|
||||
|
||||
@ -6,17 +6,28 @@
|
||||
|
||||
"""
|
||||
|
||||
from abc import ABC
|
||||
import collections
|
||||
import os
|
||||
import pickle
|
||||
from typing import Callable, List, Optional, Union, Dict, Tuple, TypeVar, cast, Sequence, Any
|
||||
from abc import ABC
|
||||
from typing import (
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
List,
|
||||
Optional,
|
||||
Sequence,
|
||||
Tuple,
|
||||
TypeVar,
|
||||
Union,
|
||||
cast,
|
||||
)
|
||||
|
||||
import numpy
|
||||
|
||||
from . import collective
|
||||
from .core import Booster, DMatrix, XGBoostError, _get_booster_layer_trees
|
||||
|
||||
|
||||
__all__ = [
|
||||
"TrainingCallback",
|
||||
"LearningRateScheduler",
|
||||
|
||||
@ -4,12 +4,12 @@ import json
|
||||
import logging
|
||||
import pickle
|
||||
from enum import IntEnum, unique
|
||||
from typing import Any, List, Dict
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import numpy as np
|
||||
|
||||
from ._typing import _T
|
||||
from .core import _LIB, _check_call, c_str, py_str, from_pystr_to_cstr
|
||||
from .core import _LIB, _check_call, c_str, from_pystr_to_cstr, py_str
|
||||
|
||||
LOGGER = logging.getLogger("[xgboost.collective]")
|
||||
|
||||
|
||||
@ -282,7 +282,7 @@ def _has_categorical(booster: "Booster", data: DataType) -> bool:
|
||||
"""Check whether the booster and input data for prediction contain categorical data.
|
||||
|
||||
"""
|
||||
from .data import _is_pandas_df, _is_cudf_df
|
||||
from .data import _is_cudf_df, _is_pandas_df
|
||||
if _is_pandas_df(data) or _is_cudf_df(data):
|
||||
ft = booster.feature_types
|
||||
if ft is None:
|
||||
@ -355,8 +355,7 @@ def ctypes2cupy(cptr: CNumericPtr, length: int, dtype: Type[np.number]) -> CupyT
|
||||
"""Convert a ctypes pointer array to a cupy array."""
|
||||
# pylint: disable=import-error
|
||||
import cupy
|
||||
from cupy.cuda.memory import MemoryPointer
|
||||
from cupy.cuda.memory import UnownedMemory
|
||||
from cupy.cuda.memory import MemoryPointer, UnownedMemory
|
||||
|
||||
CUPY_TO_CTYPES_MAPPING: Dict[Type[np.number], Type[CNumeric]] = {
|
||||
cupy.float32: ctypes.c_float,
|
||||
@ -512,8 +511,7 @@ class DataIter(ABC): # pylint: disable=too-many-instance-attributes
|
||||
feature_types: Optional[FeatureTypes] = None,
|
||||
**kwargs: Any,
|
||||
) -> None:
|
||||
from .data import dispatch_proxy_set_data
|
||||
from .data import _proxy_transform
|
||||
from .data import _proxy_transform, dispatch_proxy_set_data
|
||||
|
||||
new, cat_codes, feature_names, feature_types = _proxy_transform(
|
||||
data,
|
||||
@ -732,7 +730,7 @@ class DMatrix: # pylint: disable=too-many-instance-attributes,too-many-public-m
|
||||
self.handle: Optional[ctypes.c_void_p] = None
|
||||
return
|
||||
|
||||
from .data import dispatch_data_backend, _is_iter
|
||||
from .data import _is_iter, dispatch_data_backend
|
||||
|
||||
if _is_iter(data):
|
||||
self._init_from_iter(data, enable_categorical)
|
||||
@ -1406,10 +1404,10 @@ class QuantileDMatrix(DMatrix):
|
||||
**meta: Any,
|
||||
) -> None:
|
||||
from .data import (
|
||||
_is_dlpack,
|
||||
_transform_dlpack,
|
||||
_is_iter,
|
||||
SingleBatchInternalIter,
|
||||
_is_dlpack,
|
||||
_is_iter,
|
||||
_transform_dlpack,
|
||||
)
|
||||
|
||||
if _is_dlpack(data):
|
||||
|
||||
@ -278,10 +278,7 @@ def _pandas_feature_info(
|
||||
enable_categorical: bool,
|
||||
) -> Tuple[Optional[FeatureNames], Optional[FeatureTypes]]:
|
||||
import pandas as pd
|
||||
from pandas.api.types import (
|
||||
is_sparse,
|
||||
is_categorical_dtype,
|
||||
)
|
||||
from pandas.api.types import is_categorical_dtype, is_sparse
|
||||
|
||||
# handle feature names
|
||||
if feature_names is None and meta is None:
|
||||
@ -308,10 +305,10 @@ def _pandas_feature_info(
|
||||
def is_nullable_dtype(dtype: PandasDType) -> bool:
|
||||
"""Wether dtype is a pandas nullable type."""
|
||||
from pandas.api.types import (
|
||||
is_integer_dtype,
|
||||
is_bool_dtype,
|
||||
is_float_dtype,
|
||||
is_categorical_dtype,
|
||||
is_float_dtype,
|
||||
is_integer_dtype,
|
||||
)
|
||||
|
||||
# dtype: pd.core.arrays.numeric.NumericDtype
|
||||
@ -325,6 +322,7 @@ def is_nullable_dtype(dtype: PandasDType) -> bool:
|
||||
|
||||
def _pandas_cat_null(data: DataFrame) -> DataFrame:
|
||||
from pandas.api.types import is_categorical_dtype
|
||||
|
||||
# handle category codes and nullable.
|
||||
cat_columns = [
|
||||
col
|
||||
@ -363,10 +361,7 @@ def _transform_pandas_df(
|
||||
meta: Optional[str] = None,
|
||||
meta_type: Optional[NumpyDType] = None,
|
||||
) -> Tuple[np.ndarray, Optional[FeatureNames], Optional[FeatureTypes]]:
|
||||
from pandas.api.types import (
|
||||
is_sparse,
|
||||
is_categorical_dtype,
|
||||
)
|
||||
from pandas.api.types import is_categorical_dtype, is_sparse
|
||||
|
||||
if not all(
|
||||
dtype.name in _pandas_dtype_mapper
|
||||
@ -533,8 +528,9 @@ def _from_dt_df(
|
||||
ptrs[icol] = ctypes.c_void_p(ptr)
|
||||
else:
|
||||
# datatable<=0.8.0
|
||||
from datatable.internal import \
|
||||
frame_column_data_r # pylint: disable=no-name-in-module
|
||||
from datatable.internal import (
|
||||
frame_column_data_r, # pylint: disable=no-name-in-module
|
||||
)
|
||||
for icol in range(data.ncols):
|
||||
ptrs[icol] = frame_column_data_r(data, icol)
|
||||
|
||||
|
||||
@ -3,8 +3,8 @@
|
||||
|
||||
import os
|
||||
import platform
|
||||
from typing import List
|
||||
import sys
|
||||
from typing import List
|
||||
|
||||
|
||||
class XGBoostLibraryNotFound(Exception):
|
||||
|
||||
@ -2,9 +2,9 @@
|
||||
# pylint: disable=too-many-branches
|
||||
# coding: utf-8
|
||||
"""Plotting Library."""
|
||||
from io import BytesIO
|
||||
import json
|
||||
from typing import Optional, Any
|
||||
from io import BytesIO
|
||||
from typing import Any, Optional
|
||||
|
||||
import numpy as np
|
||||
|
||||
@ -269,8 +269,8 @@ def plot_tree(
|
||||
|
||||
"""
|
||||
try:
|
||||
from matplotlib import pyplot as plt
|
||||
from matplotlib import image
|
||||
from matplotlib import pyplot as plt
|
||||
except ImportError as e:
|
||||
raise ImportError('You must install matplotlib to plot tree') from e
|
||||
|
||||
|
||||
@ -2,7 +2,7 @@
|
||||
import logging
|
||||
import warnings
|
||||
from enum import IntEnum, unique
|
||||
from typing import Any, TypeVar, Callable, Optional, List
|
||||
from typing import Any, Callable, List, Optional, TypeVar
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
@ -10,7 +10,6 @@ import os
|
||||
import platform
|
||||
import socket
|
||||
import sys
|
||||
import urllib
|
||||
import zipfile
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
from contextlib import contextmanager
|
||||
@ -29,6 +28,7 @@ from typing import (
|
||||
TypedDict,
|
||||
Union,
|
||||
)
|
||||
from urllib import request
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
@ -439,7 +439,7 @@ def get_mq2008(
|
||||
src = "https://s3-us-west-2.amazonaws.com/xgboost-examples/MQ2008.zip"
|
||||
target = dpath + "/MQ2008.zip"
|
||||
if not os.path.exists(target):
|
||||
urllib.request.urlretrieve(url=src, filename=target)
|
||||
request.urlretrieve(url=src, filename=target)
|
||||
|
||||
with zipfile.ZipFile(target, "r") as f:
|
||||
f.extractall(path=dpath)
|
||||
|
||||
@ -3,14 +3,13 @@
|
||||
This script is a variant of dmlc-core/dmlc_tracker/tracker.py,
|
||||
which is a specialized version for xgboost tasks.
|
||||
"""
|
||||
import argparse
|
||||
import logging
|
||||
import socket
|
||||
import struct
|
||||
import logging
|
||||
from threading import Thread
|
||||
import argparse
|
||||
import sys
|
||||
|
||||
from typing import Dict, List, Tuple, Union, Optional, Set
|
||||
from threading import Thread
|
||||
from typing import Dict, List, Optional, Set, Tuple, Union
|
||||
|
||||
_RingMap = Dict[int, Tuple[int, int]]
|
||||
_TreeMap = Dict[int, List[int]]
|
||||
|
||||
@ -5,15 +5,26 @@
|
||||
import copy
|
||||
import os
|
||||
import warnings
|
||||
from typing import Optional, Dict, Any, Union, Tuple, Sequence, List, cast, Iterable
|
||||
from typing import Any, Dict, Iterable, List, Optional, Sequence, Tuple, Union, cast
|
||||
|
||||
import numpy as np
|
||||
|
||||
from .callback import TrainingCallback, CallbackContainer, EvaluationMonitor, EarlyStopping
|
||||
from .core import Booster, DMatrix, XGBoostError, _deprecate_positional_args
|
||||
from .core import Metric, Objective
|
||||
from .compat import SKLEARN_INSTALLED, XGBStratifiedKFold, DataFrame
|
||||
from ._typing import Callable, FPreProcCallable, BoosterParam
|
||||
from ._typing import BoosterParam, Callable, FPreProcCallable
|
||||
from .callback import (
|
||||
CallbackContainer,
|
||||
EarlyStopping,
|
||||
EvaluationMonitor,
|
||||
TrainingCallback,
|
||||
)
|
||||
from .compat import SKLEARN_INSTALLED, DataFrame, XGBStratifiedKFold
|
||||
from .core import (
|
||||
Booster,
|
||||
DMatrix,
|
||||
Metric,
|
||||
Objective,
|
||||
XGBoostError,
|
||||
_deprecate_positional_args,
|
||||
)
|
||||
|
||||
_CVFolds = Sequence["CVPack"]
|
||||
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
import sys
|
||||
import re
|
||||
import zipfile
|
||||
import glob
|
||||
import re
|
||||
import sys
|
||||
import zipfile
|
||||
|
||||
if len(sys.argv) != 2:
|
||||
print('Usage: {} [wheel]'.format(sys.argv[0]))
|
||||
|
||||
@ -12,16 +12,31 @@ CURDIR = os.path.normpath(os.path.abspath(os.path.dirname(__file__)))
|
||||
PROJECT_ROOT = os.path.normpath(os.path.join(CURDIR, os.path.pardir, os.path.pardir))
|
||||
|
||||
|
||||
def run_formatter(rel_path: str) -> bool:
|
||||
path = os.path.join(PROJECT_ROOT, rel_path)
|
||||
isort_ret = subprocess.run(["isort", "--check", "--profile=black", path]).returncode
|
||||
black_ret = subprocess.run(["black", "--check", rel_path]).returncode
|
||||
if isort_ret != 0 or black_ret != 0:
|
||||
msg = (
|
||||
"Please run the following command on your machine to address the format"
|
||||
f" errors:\n isort --profile=black {rel_path}\n black {rel_path}\n"
|
||||
)
|
||||
print(msg, file=sys.stdout)
|
||||
def run_black(rel_path: str) -> bool:
|
||||
cmd = ["black", "-q", "--check", rel_path]
|
||||
ret = subprocess.run(cmd).returncode
|
||||
if ret != 0:
|
||||
subprocess.run(["black", "--version"])
|
||||
msg = """
|
||||
Please run the following command on your machine to address the formatting error:
|
||||
|
||||
"""
|
||||
msg += " ".join(cmd)
|
||||
print(msg, file=sys.stderr)
|
||||
return False
|
||||
return True
|
||||
|
||||
|
||||
def run_isort(rel_path: str) -> bool:
|
||||
cmd = ["isort", "--check", "--profile=black", rel_path]
|
||||
ret = subprocess.run(cmd).returncode
|
||||
if ret != 0:
|
||||
msg = """
|
||||
Please run the following command on your machine to address the formatting error:
|
||||
|
||||
"""
|
||||
msg += " ".join(cmd)
|
||||
print(msg, file=sys.stderr)
|
||||
return False
|
||||
return True
|
||||
|
||||
@ -114,8 +129,8 @@ if __name__ == "__main__":
|
||||
parser.add_argument("--pylint", type=int, choices=[0, 1], default=1)
|
||||
args = parser.parse_args()
|
||||
if args.format == 1:
|
||||
if not all(
|
||||
run_formatter(path)
|
||||
black_results = [
|
||||
run_black(path)
|
||||
for path in [
|
||||
# core
|
||||
"python-package/xgboost/__init__.py",
|
||||
@ -141,7 +156,28 @@ if __name__ == "__main__":
|
||||
"demo/guide-python/categorical.py",
|
||||
"demo/guide-python/spark_estimator_examples.py",
|
||||
]
|
||||
):
|
||||
]
|
||||
if not all(black_results):
|
||||
sys.exit(-1)
|
||||
|
||||
isort_results = [
|
||||
run_isort(path)
|
||||
for path in [
|
||||
# core
|
||||
"python-package/",
|
||||
# tests
|
||||
"tests/test_distributed/",
|
||||
"tests/python/",
|
||||
"tests/python-gpu/",
|
||||
"tests/ci_build/",
|
||||
# demo
|
||||
"demo/",
|
||||
# misc
|
||||
"dev/",
|
||||
"doc/",
|
||||
]
|
||||
]
|
||||
if not all(black_results):
|
||||
sys.exit(-1)
|
||||
|
||||
if args.type_check == 1:
|
||||
|
||||
@ -1,5 +1,5 @@
|
||||
import sys
|
||||
import os
|
||||
import sys
|
||||
from contextlib import contextmanager
|
||||
|
||||
|
||||
|
||||
@ -1,15 +1,16 @@
|
||||
#!/usr/bin/env python
|
||||
import subprocess
|
||||
import yaml
|
||||
import json
|
||||
from multiprocessing import Pool, cpu_count
|
||||
import shutil
|
||||
import os
|
||||
import sys
|
||||
import re
|
||||
import argparse
|
||||
import json
|
||||
import os
|
||||
import re
|
||||
import shutil
|
||||
import subprocess
|
||||
import sys
|
||||
from multiprocessing import Pool, cpu_count
|
||||
from time import time
|
||||
|
||||
import yaml
|
||||
|
||||
|
||||
def call(args):
|
||||
'''Subprocess run wrapper.'''
|
||||
|
||||
@ -4,13 +4,10 @@ from typing import Any, Dict
|
||||
import numpy as np
|
||||
import pytest
|
||||
from hypothesis import assume, given, note, settings, strategies
|
||||
from xgboost.testing.params import cat_parameter_strategy, hist_parameter_strategy
|
||||
|
||||
import xgboost as xgb
|
||||
from xgboost import testing as tm
|
||||
from xgboost.testing.params import (
|
||||
hist_parameter_strategy,
|
||||
cat_parameter_strategy,
|
||||
)
|
||||
|
||||
sys.path.append("tests/python")
|
||||
import test_updaters as test_up
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
import os
|
||||
import subprocess
|
||||
import tempfile
|
||||
import sys
|
||||
import tempfile
|
||||
|
||||
import pytest
|
||||
|
||||
|
||||
@ -5,9 +5,8 @@ import numpy as np
|
||||
import pytest
|
||||
|
||||
import xgboost as xgb
|
||||
from xgboost import RabitTracker
|
||||
from xgboost import RabitTracker, collective
|
||||
from xgboost import testing as tm
|
||||
from xgboost import collective
|
||||
|
||||
if sys.platform.startswith("win"):
|
||||
pytest.skip("Skipping dask tests on Windows", allow_module_level=True)
|
||||
|
||||
@ -5,14 +5,14 @@ from typing import Any, Dict
|
||||
import numpy as np
|
||||
import pytest
|
||||
from hypothesis import given, note, settings, strategies
|
||||
from xgboost.testing.params import (
|
||||
cat_parameter_strategy,
|
||||
exact_parameter_strategy,
|
||||
hist_parameter_strategy,
|
||||
)
|
||||
|
||||
import xgboost as xgb
|
||||
from xgboost import testing as tm
|
||||
from xgboost.testing.params import (
|
||||
exact_parameter_strategy,
|
||||
hist_parameter_strategy,
|
||||
cat_parameter_strategy,
|
||||
)
|
||||
|
||||
|
||||
def train_result(param, dmat, num_rounds):
|
||||
|
||||
@ -12,7 +12,7 @@ from itertools import starmap
|
||||
from math import ceil
|
||||
from operator import attrgetter, getitem
|
||||
from pathlib import Path
|
||||
from typing import Any, Dict, Optional, Tuple, Type, Union, Generator
|
||||
from typing import Any, Dict, Generator, Optional, Tuple, Type, Union
|
||||
|
||||
import hypothesis
|
||||
import numpy as np
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user