* Add num target model parameter, which is configured from input labels.
* Change elementwise metric and indexing for weights.
* Add demo.
* Add tests.
* Add a new ctor to tensor for `initilizer_list`.
* Change labels from host device vector to tensor.
* Rename the field from `labels_` to `labels` since it's a public member.
This PR changes base_margin into a 3-dim array, with one of them being reserved for multi-target classification. Also, a breaking change is made for binary serialization due to extra dimension along with a fix for saving the feature weights. Lastly, it unifies the prediction initialization between CPU and GPU. After this PR, the meta info setter in Python will be based on array interface.
* Add hessian to batch param in preparation of new approx impl.
* Extract a push method for gradient index matrix.
* Use span instead of vector ref for hessian in sketching.
* Create a binary format for gradient index.
- Reduce dependency on dmlc parsers and provide an interface for users to load data by themselves.
- Remove use of threaded iterator and IO queue.
- Remove `page_size`.
- Make sure the number of pages in memory is bounded.
- Make sure the cache can not be violated.
- Provide an interface for internal algorithms to process data asynchronously.
* Make external memory data partitioning deterministic.
* Change the meaning of `page_size` from bytes to number of rows.
* Design a data pool.
* Note for external memory.
* Enable unity build on Windows CI.
* Force garbage collect on test.
* [CI] Add RMM as an optional dependency
* Replace caching allocator with pool allocator from RMM
* Revert "Replace caching allocator with pool allocator from RMM"
This reverts commit e15845d4e72e890c2babe31a988b26503a7d9038.
* Use rmm::mr::get_default_resource()
* Try setting default resource (doesn't work yet)
* Allocate pool_mr in the heap
* Prevent leaking pool_mr handle
* Separate EXPECT_DEATH() in separate test suite suffixed DeathTest
* Turn off death tests for RMM
* Address reviewer's feedback
* Prevent leaking of cuda_mr
* Fix Jenkinsfile syntax
* Remove unnecessary function in Jenkinsfile
* [CI] Install NCCL into RMM container
* Run Python tests
* Try building with RMM, CUDA 10.0
* Do not use RMM for CUDA 10.0 target
* Actually test for test_rmm flag
* Fix TestPythonGPU
* Use CNMeM allocator, since pool allocator doesn't yet support multiGPU
* Use 10.0 container to build RMM-enabled XGBoost
* Revert "Use 10.0 container to build RMM-enabled XGBoost"
This reverts commit 789021fa31112e25b683aef39fff375403060141.
* Fix Jenkinsfile
* [CI] Assign larger /dev/shm to NCCL
* Use 10.2 artifact to run multi-GPU Python tests
* Add CUDA 10.0 -> 11.0 cross-version test; remove CUDA 10.0 target
* Rename Conda env rmm_test -> gpu_test
* Use env var to opt into CNMeM pool for C++ tests
* Use identical CUDA version for RMM builds and tests
* Use Pytest fixtures to enable RMM pool in Python tests
* Move RMM to plugin/CMakeLists.txt; use PLUGIN_RMM
* Use per-device MR; use command arg in gtest
* Set CMake prefix path to use Conda env
* Use 0.15 nightly version of RMM
* Remove unnecessary header
* Fix a unit test when cudf is missing
* Add RMM demos
* Remove print()
* Use HostDeviceVector in GPU predictor
* Simplify pytest setup; use LocalCUDACluster fixture
* Address reviewers' commments
Co-authored-by: Hyunsu Cho <chohyu01@cs.wasshington.edu>
Normal prediction with DMatrix is now thread safe with locks. Added inplace prediction is lock free thread safe.
When data is on device (cupy, cudf), the returned data is also on device.
* Implementation for numpy, csr, cudf and cupy.
* Implementation for dask.
* Remove sync in simple dmatrix.
* Move prediction cache into Learner.
* Clean-ups
- Remove duplicated cache in Learner and GBM.
- Remove ad-hoc fix of invalid cache.
- Remove `PredictFromCache` in predictors.
- Remove prediction cache for linear altogether, as it's only moving the
prediction into training process but doesn't provide any actual overall speed
gain.
- The cache is now unique to Learner, which means the ownership is no longer
shared by any other components.
* Changes
- Add version to prediction cache.
- Use weak ptr to check expired DMatrix.
- Pass shared pointer instead of raw pointer.
* Pass pointer to model parameters.
This PR de-duplicates most of the model parameters except the one in
`tree_model.h`. One difficulty is `base_score` is a model property but can be
changed at runtime by objective function. Hence when performing model IO, we
need to save the one provided by users, instead of the one transformed by
objective. Here we created an immutable version of `LearnerModelParam` that
represents the value of model parameter after configuration.
* Apply Configurable to objective functions.
* Apply Model to Learner and Regtree, gbm.
* Add Load/SaveConfig to objs.
* Refactor obj tests to use smart pointer.
* Dummy methods for Save/Load Model.
* Move get transpose into cc.
* Clean up headers in host device vector, remove thrust dependency.
* Move span and host device vector into public.
* Install c++ headers.
* Short notes for c and c++.
Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* Fix external memory for get column batches.
This fixes two bugs:
* Use PushCSC for get column batches.
* Don't remove the created temporary directory before finishing test.
* Check all pages.
* - training with external memory - part 2 of 2
- when external memory support is enabled, building of histogram indices are
done incrementally for every sparse page
- the entire set of input data is divided across multiple gpu's and the relative
row positions within each device is tracked when building the compressed histogram buffer
- this was tested using a mortgage dataset containing ~ 670m rows before 4xt4's could be
saturated
* Upgrade gtest for clang-tidy.
* Use CMake to install GTest instead of mv.
* Don't enforce clang-tidy to return 0 due to errors in thrust.
* Add a small test for tidy itself.
* Reformat.
* Port elementwise metrics to GPU.
* All elementwise metrics are converted to static polymorphic.
* Create a reducer for metrics reduction.
* Remove const of Metric::Eval to accommodate CubMemory.
* Make C++ unit tests run and pass on Windows
* Fix logic for external memory. The letter ':' is part of drive letter,
so remove the drive letter before splitting on ':'.
* Cosmetic syntax changes to keep MSVC happy.
* Fix lint
* Add Windows guard
* Split building histogram into separated class.
* Extract `InitCompressedRow` definition.
* Basic tests for gpu-hist.
* Document the code more verbosely.
* Removed `HistCutUnit`.
* Removed some duplicated copies in `GPUHistMaker`.
* Implement LCG and use it in tests.
* Implement Transform class.
* Add tests for softmax.
* Use Transform in regression, softmax and hinge objectives, except for Cox.
* Mark old gpu objective functions deprecated.
* static_assert for softmax.
* Split up multi-gpu tests.
* Replaced std::vector with HostDeviceVector in MetaInfo and SparsePage.
- added distributions to HostDeviceVector
- using HostDeviceVector for labels, weights and base margings in MetaInfo
- using HostDeviceVector for offset and data in SparsePage
- other necessary refactoring
* Added const version of HostDeviceVector API calls.
- const versions added to calls that can trigger data transfers, e.g. DevicePointer()
- updated the code that uses HostDeviceVector
- objective functions now accept const HostDeviceVector<bst_float>& for predictions
* Updated src/linear/updater_gpu_coordinate.cu.
* Added read-only state for HostDeviceVector sync.
- this means no copies are performed if both host and devices access
the HostDeviceVector read-only
* Fixed linter and test errors.
- updated the lz4 plugin
- added ConstDeviceSpan to HostDeviceVector
- using device % dh::NVisibleDevices() for the physical device number,
e.g. in calls to cudaSetDevice()
* Fixed explicit template instantiation errors for HostDeviceVector.
- replaced HostDeviceVector<unsigned int> with HostDeviceVector<int>
* Fixed HostDeviceVector tests that require multiple GPUs.
- added a mock set device handler; when set, it is called instead of cudaSetDevice()
* Use sparse page as singular CSR matrix representation
* Simplify dmatrix methods
* Reduce statefullness of batch iterators
* BREAKING CHANGE: Remove prob_buffer_row parameter. Users are instead recommended to sample their dataset as a preprocessing step before using XGBoost.
* GPU binning and compression.
- binning and index compression are done inside the DeviceShard constructor
- in case of a DMatrix with multiple row batches, it is first converted into a single row batch
* Replaced std::vector-based interfaces with HostDeviceVector-based interfaces.
- replacement was performed in the learner, boosters, predictors,
updaters, and objective functions
- only interfaces used in training were replaced;
interfaces like PredictInstance() still use std::vector
- refactoring necessary for replacement of interfaces was also performed,
such as using HostDeviceVector in prediction cache
* HostDeviceVector-based interfaces for custom objective function example plugin.