Add travis sanitizers tests. (#3557)

* Add travis sanitizers tests.

* Add gcc-7 in Travis.
* Add SANITIZER_PATH for CMake.
* Enable sanitizer tests in Travis.

* Fix memory leaks in tests.

* Fix all memory leaks reported by Address Sanitizer.
* tests/cpp/helpers.h/CreateDMatrix now returns raw pointer.
This commit is contained in:
trivialfis 2018-08-19 12:40:30 +08:00 committed by Rory Mitchell
parent 983cb0b374
commit cf2d86a4f6
30 changed files with 221 additions and 76 deletions

View File

@ -28,6 +28,8 @@ env:
- TASK=cpp_test
# distributed test
- TASK=distributed_test
# address sanitizer test
- TASK=sanitizer_test
matrix:
exclude:
@ -43,6 +45,8 @@ matrix:
env: TASK=cpp_test
- os: osx
env: TASK=distributed_test
- os: osx
env: TASK=sanitizer_test
# dependent apt packages
addons:
@ -62,6 +66,8 @@ addons:
- graphviz
- gcc-4.8
- g++-4.8
- gcc-7
- g++-7
before_install:
- source dmlc-core/scripts/travis/travis_setup_env.sh

View File

@ -14,9 +14,10 @@ option(USE_NCCL "Build using NCCL for multi-GPU. Also requires USE_CUDA")
option(JVM_BINDINGS "Build JVM bindings" OFF)
option(GOOGLE_TEST "Build google tests" OFF)
option(R_LIB "Build shared library for R package" OFF)
option(USE_SANITIZER "Use santizer flags" OFF)
set(GPU_COMPUTE_VER "" CACHE STRING
"Space separated list of compute versions to be built against, e.g. '35 61'")
option(USE_SANITIZER "Use santizer flags" OFF)
option(SANITIZER_PATH "Path to sanitizes.")
set(ENABLED_SANITIZERS "address" "leak" CACHE STRING
"Semicolon separated list of sanitizer names. E.g 'address;leak'. Supported sanitizers are
address, leak and thread.")

View File

@ -1,8 +1,8 @@
set(ASan_LIB_NAME ASan)
find_library(ASan_LIBRARY
NAMES libasan.so libasan.so.4
PATHS /usr/lib64 /usr/lib /usr/local/lib64 /usr/local/lib)
NAMES libasan.so libasan.so.4 libasan.so.3 libasan.so.2 libasan.so.1 libasan.so.0
PATHS ${SANITIZER_PATH} /usr/lib64 /usr/lib /usr/local/lib64 /usr/local/lib ${CMAKE_PREFIX_PATH}/lib)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(ASan DEFAULT_MSG

View File

@ -2,7 +2,7 @@ set(LSan_LIB_NAME lsan)
find_library(LSan_LIBRARY
NAMES liblsan.so liblsan.so.0 liblsan.so.0.0.0
PATHS /usr/lib64 /usr/lib /usr/local/lib64 /usr/local/lib)
PATHS ${SANITIZER_PATH} /usr/lib64 /usr/lib /usr/local/lib64 /usr/local/lib ${CMAKE_PREFIX_PATH}/lib)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(LSan DEFAULT_MSG

View File

@ -2,7 +2,7 @@ set(TSan_LIB_NAME tsan)
find_library(TSan_LIBRARY
NAMES libtsan.so libtsan.so.0 libtsan.so.0.0.0
PATHS /usr/lib64 /usr/lib /usr/local/lib64 /usr/local/lib)
PATHS ${SANITIZER_PATH} /usr/lib64 /usr/lib /usr/local/lib64 /usr/local/lib ${CMAKE_PREFIX_PATH}/lib)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(TSan DEFAULT_MSG

View File

@ -149,6 +149,14 @@ sanitizer is not compatible with the other two sanitizers.
cmake -DUSE_SANITIZER=ON -DENABLED_SANITIZERS="address;leak" /path/to/xgboost
By default, CMake will search regular system paths for sanitizers, you can also
supply a specified SANITIZER_PATH.
.. code-block:: bash
cmake -DUSE_SANITIZER=ON -DENABLED_SANITIZERS="address;leak" \
-DSANITIZER_PATH=/path/to/sanitizers /path/to/xgboost
How to use sanitizers with CUDA support
=======================================
Runing XGBoost on CUDA with address sanitizer (asan) will raise memory error.

View File

@ -13,14 +13,14 @@ TEST(c_api, XGDMatrixCreateFromMatDT) {
DMatrixHandle handle;
XGDMatrixCreateFromDT(data.data(), types.data(), 3, 2, &handle,
0);
std::shared_ptr<xgboost::DMatrix> dmat =
*static_cast<std::shared_ptr<xgboost::DMatrix> *>(handle);
xgboost::MetaInfo &info = dmat->Info();
std::shared_ptr<xgboost::DMatrix> *dmat =
static_cast<std::shared_ptr<xgboost::DMatrix> *>(handle);
xgboost::MetaInfo &info = (*dmat)->Info();
ASSERT_EQ(info.num_col_, 2);
ASSERT_EQ(info.num_row_, 3);
ASSERT_EQ(info.num_nonzero_, 6);
auto iter = dmat->RowIterator();
auto iter = (*dmat)->RowIterator();
iter->BeforeFirst();
while (iter->Next()) {
auto batch = iter->Value();
@ -29,6 +29,8 @@ TEST(c_api, XGDMatrixCreateFromMatDT) {
ASSERT_EQ(batch[2][0].fvalue, 3.0f);
ASSERT_EQ(batch[2][1].fvalue, 0.0f);
}
delete dmat;
}
TEST(c_api, XGDMatrixCreateFromMat_omp) {
@ -46,14 +48,14 @@ TEST(c_api, XGDMatrixCreateFromMat_omp) {
std::numeric_limits<float>::quiet_NaN(), &handle,
0);
std::shared_ptr<xgboost::DMatrix> dmat =
*static_cast<std::shared_ptr<xgboost::DMatrix> *>(handle);
xgboost::MetaInfo &info = dmat->Info();
std::shared_ptr<xgboost::DMatrix> *dmat =
static_cast<std::shared_ptr<xgboost::DMatrix> *>(handle);
xgboost::MetaInfo &info = (*dmat)->Info();
ASSERT_EQ(info.num_col_, num_cols);
ASSERT_EQ(info.num_row_, row);
ASSERT_EQ(info.num_nonzero_, num_cols * row - num_missing);
auto iter = dmat->RowIterator();
auto iter = (*dmat)->RowIterator();
iter->BeforeFirst();
while (iter->Next()) {
auto batch = iter->Value();
@ -64,5 +66,6 @@ TEST(c_api, XGDMatrixCreateFromMat_omp) {
}
}
}
delete dmat;
}
}

View File

@ -7,45 +7,48 @@ namespace common {
TEST(DenseColumn, Test) {
auto dmat = CreateDMatrix(100, 10, 0.0);
GHistIndexMatrix gmat;
gmat.Init(dmat.get(), 256);
gmat.Init((*dmat).get(), 256);
ColumnMatrix column_matrix;
column_matrix.Init(gmat, 0.2);
for (auto i = 0ull; i < dmat->Info().num_row_; i++) {
for (auto j = 0ull; j < dmat->Info().num_col_; j++) {
for (auto i = 0ull; i < (*dmat)->Info().num_row_; i++) {
for (auto j = 0ull; j < (*dmat)->Info().num_col_; j++) {
auto col = column_matrix.GetColumn(j);
EXPECT_EQ(gmat.index[i * dmat->Info().num_col_ + j],
EXPECT_EQ(gmat.index[i * (*dmat)->Info().num_col_ + j],
col.GetGlobalBinIdx(i));
}
}
delete dmat;
}
TEST(SparseColumn, Test) {
auto dmat = CreateDMatrix(100, 1, 0.85);
GHistIndexMatrix gmat;
gmat.Init(dmat.get(), 256);
gmat.Init((*dmat).get(), 256);
ColumnMatrix column_matrix;
column_matrix.Init(gmat, 0.5);
auto col = column_matrix.GetColumn(0);
ASSERT_EQ(col.Size(), gmat.index.size());
for (auto i = 0ull; i < col.Size(); i++) {
EXPECT_EQ(gmat.index[gmat.row_ptr[col.GetRowIdx(i)]],
col.GetGlobalBinIdx(i));
}
auto col = column_matrix.GetColumn(0);
ASSERT_EQ(col.Size(), gmat.index.size());
for (auto i = 0ull; i < col.Size(); i++) {
EXPECT_EQ(gmat.index[gmat.row_ptr[col.GetRowIdx(i)]],
col.GetGlobalBinIdx(i));
}
delete dmat;
}
TEST(DenseColumnWithMissing, Test) {
auto dmat = CreateDMatrix(100, 1, 0.5);
GHistIndexMatrix gmat;
gmat.Init(dmat.get(), 256);
gmat.Init((*dmat).get(), 256);
ColumnMatrix column_matrix;
column_matrix.Init(gmat, 0.2);
auto col = column_matrix.GetColumn(0);
for (auto i = 0ull; i < col.Size(); i++) {
if (col.IsMissing(i)) continue;
EXPECT_EQ(gmat.index[gmat.row_ptr[col.GetRowIdx(i)]],
col.GetGlobalBinIdx(i));
}
auto col = column_matrix.GetColumn(0);
for (auto i = 0ull; i < col.Size(); i++) {
if (col.IsMissing(i)) continue;
EXPECT_EQ(gmat.index[gmat.row_ptr[col.GetRowIdx(i)]],
col.GetGlobalBinIdx(i));
}
delete dmat;
}
} // namespace common
} // namespace xgboost

View File

@ -22,7 +22,7 @@ TEST(gpu_hist_util, TestDeviceSketch) {
DMatrixHandle dmat_handle;
XGDMatrixCreateFromMat(test_data.data(), nrows, 1, -1,
&dmat_handle);
auto dmat = *static_cast<std::shared_ptr<xgboost::DMatrix> *>(dmat_handle);
auto dmat = static_cast<std::shared_ptr<xgboost::DMatrix> *>(dmat_handle);
// parameters for finding quantiles
tree::TrainParam p;
@ -34,15 +34,15 @@ TEST(gpu_hist_util, TestDeviceSketch) {
// find quantiles on the CPU
HistCutMatrix hmat_cpu;
hmat_cpu.Init(dmat.get(), p.max_bin);
hmat_cpu.Init((*dmat).get(), p.max_bin);
// find the cuts on the GPU
dmlc::DataIter<SparsePage>* iter = dmat->RowIterator();
dmlc::DataIter<SparsePage>* iter = (*dmat)->RowIterator();
iter->BeforeFirst();
CHECK(iter->Next());
const SparsePage& batch = iter->Value();
HistCutMatrix hmat_gpu;
DeviceSketch(batch, dmat->Info(), p, &hmat_gpu);
DeviceSketch(batch, (*dmat)->Info(), p, &hmat_gpu);
CHECK(!iter->Next());
// compare the cuts
@ -54,6 +54,8 @@ TEST(gpu_hist_util, TestDeviceSketch) {
for (int i = 0; i < hmat_gpu.cut.size(); ++i) {
ASSERT_LT(fabs(hmat_cpu.cut[i] - hmat_gpu.cut[i]), eps * nrows);
}
delete dmat;
}
} // namespace common

View File

@ -64,6 +64,8 @@ TEST(MetaInfo, SaveLoadBinary) {
EXPECT_EQ(inforead.num_row_, info.num_row_);
std::remove(tmp_file.c_str());
delete fs;
}
TEST(MetaInfo, LoadQid) {

View File

@ -29,4 +29,7 @@ TEST(SimpleCSRSource, SaveLoadBinary) {
EXPECT_EQ(first_row[2].index, first_row_read[2].index);
EXPECT_EQ(first_row[2].fvalue, first_row_read[2].fvalue);
row_iter = nullptr; row_iter_read = nullptr;
delete dmat;
delete dmat_read;
}

View File

@ -14,6 +14,8 @@ TEST(SimpleDMatrix, MetaInfo) {
EXPECT_EQ(dmat->Info().num_col_, 5);
EXPECT_EQ(dmat->Info().num_nonzero_, 6);
EXPECT_EQ(dmat->Info().labels_.size(), dmat->Info().num_row_);
delete dmat;
}
TEST(SimpleDMatrix, RowAccess) {
@ -35,6 +37,8 @@ TEST(SimpleDMatrix, RowAccess) {
EXPECT_EQ(first_row[2].index, 2);
EXPECT_EQ(first_row[2].fvalue, 20);
row_iter = nullptr;
delete dmat;
}
TEST(SimpleDMatrix, ColAccessWithoutBatches) {
@ -76,4 +80,6 @@ TEST(SimpleDMatrix, ColAccessWithoutBatches) {
}
EXPECT_EQ(num_col_batch, 1) << "Expected number of batches to be 1";
col_iter = nullptr;
delete dmat;
}

View File

@ -21,6 +21,8 @@ TEST(SparsePageDMatrix, MetaInfo) {
// Clean up of external memory files
std::remove((tmp_file + ".cache").c_str());
std::remove((tmp_file + ".cache.row.page").c_str());
delete dmat;
}
TEST(SparsePageDMatrix, RowAccess) {
@ -48,6 +50,8 @@ TEST(SparsePageDMatrix, RowAccess) {
// Clean up of external memory files
std::remove((tmp_file + ".cache").c_str());
std::remove((tmp_file + ".cache.row.page").c_str());
delete dmat;
}
TEST(SparsePageDMatrix, ColAcess) {
@ -84,4 +88,6 @@ TEST(SparsePageDMatrix, ColAcess) {
std::remove((tmp_file + ".cache").c_str());
std::remove((tmp_file + ".cache.col.page").c_str());
std::remove((tmp_file + ".cache.row.page").c_str());
delete dmat;
}

View File

@ -107,8 +107,8 @@ xgboost::bst_float GetMetricEval(xgboost::Metric * metric,
return metric->Eval(preds, info, false);
}
std::shared_ptr<xgboost::DMatrix> CreateDMatrix(int rows, int columns,
float sparsity, int seed) {
std::shared_ptr<xgboost::DMatrix>* CreateDMatrix(int rows, int columns,
float sparsity, int seed) {
const float missing_value = -1;
std::vector<float> test_data(rows * columns);
std::mt19937 gen(seed);
@ -124,5 +124,5 @@ std::shared_ptr<xgboost::DMatrix> CreateDMatrix(int rows, int columns,
DMatrixHandle handle;
XGDMatrixCreateFromMat(test_data.data(), rows, columns, missing_value,
&handle);
return *static_cast<std::shared_ptr<xgboost::DMatrix> *>(handle);
return static_cast<std::shared_ptr<xgboost::DMatrix> *>(handle);
}

View File

@ -59,6 +59,6 @@ xgboost::bst_float GetMetricEval(
* \return The new d matrix.
*/
std::shared_ptr<xgboost::DMatrix> CreateDMatrix(int rows, int columns,
float sparsity, int seed = 0);
std::shared_ptr<xgboost::DMatrix> *CreateDMatrix(int rows, int columns,
float sparsity, int seed = 0);
#endif

View File

@ -8,37 +8,41 @@ typedef std::pair<std::string, std::string> arg;
TEST(Linear, shotgun) {
typedef std::pair<std::string, std::string> arg;
auto mat = CreateDMatrix(10, 10, 0);
std::vector<bool> enabled(mat->Info().num_col_, true);
mat->InitColAccess(1 << 16, false);
std::vector<bool> enabled((*mat)->Info().num_col_, true);
(*mat)->InitColAccess(1 << 16, false);
auto updater = std::unique_ptr<xgboost::LinearUpdater>(
xgboost::LinearUpdater::Create("shotgun"));
updater->Init({{"eta", "1."}});
xgboost::HostDeviceVector<xgboost::GradientPair> gpair(
mat->Info().num_row_, xgboost::GradientPair(-5, 1.0));
(*mat)->Info().num_row_, xgboost::GradientPair(-5, 1.0));
xgboost::gbm::GBLinearModel model;
model.param.num_feature = mat->Info().num_col_;
model.param.num_feature = (*mat)->Info().num_col_;
model.param.num_output_group = 1;
model.LazyInitModel();
updater->Update(&gpair, mat.get(), &model, gpair.Size());
updater->Update(&gpair, (*mat).get(), &model, gpair.Size());
ASSERT_EQ(model.bias()[0], 5.0f);
delete mat;
}
TEST(Linear, coordinate) {
typedef std::pair<std::string, std::string> arg;
auto mat = CreateDMatrix(10, 10, 0);
std::vector<bool> enabled(mat->Info().num_col_, true);
mat->InitColAccess(1 << 16, false);
std::vector<bool> enabled((*mat)->Info().num_col_, true);
(*mat)->InitColAccess(1 << 16, false);
auto updater = std::unique_ptr<xgboost::LinearUpdater>(
xgboost::LinearUpdater::Create("coord_descent"));
updater->Init({{"eta", "1."}});
xgboost::HostDeviceVector<xgboost::GradientPair> gpair(
mat->Info().num_row_, xgboost::GradientPair(-5, 1.0));
(*mat)->Info().num_row_, xgboost::GradientPair(-5, 1.0));
xgboost::gbm::GBLinearModel model;
model.param.num_feature = mat->Info().num_col_;
model.param.num_feature = (*mat)->Info().num_col_;
model.param.num_output_group = 1;
model.LazyInitModel();
updater->Update(&gpair, mat.get(), &model, gpair.Size());
updater->Update(&gpair, (*mat).get(), &model, gpair.Size());
ASSERT_EQ(model.bias()[0], 5.0f);
}
delete mat;
}

View File

@ -11,6 +11,7 @@ TEST(Metric, RMSE) {
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}),
0.6403f, 0.001f);
delete metric;
}
TEST(Metric, MAE) {
@ -21,6 +22,7 @@ TEST(Metric, MAE) {
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}),
0.5f, 0.001f);
delete metric;
}
TEST(Metric, LogLoss) {
@ -31,6 +33,7 @@ TEST(Metric, LogLoss) {
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}),
1.2039f, 0.001f);
delete metric;
}
TEST(Metric, Error) {
@ -56,6 +59,7 @@ TEST(Metric, Error) {
{0.1f, 0.2f, 0.1f, 0.2f},
{ 0, 0, 1, 1}),
0.5f, 0.001f);
delete metric;
}
TEST(Metric, PoissionNegLogLik) {
@ -66,4 +70,5 @@ TEST(Metric, PoissionNegLogLik) {
{0.1f, 0.2f, 0.1f, 0.2f},
{ 0, 0, 1, 1}),
1.1280f, 0.001f);
delete metric;
}

View File

@ -4,8 +4,11 @@
#include "../helpers.h"
TEST(Metric, UnknownMetric) {
EXPECT_ANY_THROW(xgboost::Metric::Create("unknown_name"));
EXPECT_NO_THROW(xgboost::Metric::Create("rmse"));
EXPECT_ANY_THROW(xgboost::Metric::Create("unknown_name@1"));
EXPECT_NO_THROW(xgboost::Metric::Create("error@0.5f"));
xgboost::Metric * metric;
EXPECT_ANY_THROW(metric = xgboost::Metric::Create("unknown_name"));
EXPECT_NO_THROW(metric = xgboost::Metric::Create("rmse"));
delete metric;
EXPECT_ANY_THROW(metric = xgboost::Metric::Create("unknown_name@1"));
EXPECT_NO_THROW(metric = xgboost::Metric::Create("error@0.5f"));
delete metric;
}

View File

@ -13,6 +13,8 @@ TEST(Metric, MultiClassError) {
{0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f},
{0, 1, 2}),
0.666f, 0.001f);
delete metric;
}
TEST(Metric, MultiClassLogLoss) {
@ -25,4 +27,6 @@ TEST(Metric, MultiClassLogLoss) {
{0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f, 0.1f},
{0, 1, 2}),
2.302f, 0.001f);
delete metric;
}

View File

@ -17,6 +17,8 @@ TEST(Metric, AMS) {
metric = xgboost::Metric::Create("ams@0");
ASSERT_STREQ(metric->Name(), "ams@0");
EXPECT_NEAR(GetMetricEval(metric, {0, 1}, {0, 1}), 0.311f, 0.001f);
delete metric;
}
TEST(Metric, AUC) {
@ -29,6 +31,8 @@ TEST(Metric, AUC) {
0.5f, 0.001f);
EXPECT_ANY_THROW(GetMetricEval(metric, {0, 1}, {}));
EXPECT_ANY_THROW(GetMetricEval(metric, {0, 0}, {0, 0}));
delete metric;
}
TEST(Metric, AUCPR) {
@ -50,6 +54,8 @@ TEST(Metric, AUCPR) {
0.2769199f, 0.001f);
EXPECT_ANY_THROW(GetMetricEval(metric, {0, 1}, {}));
EXPECT_ANY_THROW(GetMetricEval(metric, {0, 0}, {0, 0}));
delete metric;
}
TEST(Metric, Precision) {
@ -74,6 +80,8 @@ TEST(Metric, Precision) {
0.5f, 0.001f);
EXPECT_ANY_THROW(GetMetricEval(metric, {0, 1}, {}));
delete metric;
}
TEST(Metric, NDCG) {
@ -114,6 +122,8 @@ TEST(Metric, NDCG) {
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}),
0.3868f, 0.001f);
delete metric;
}
TEST(Metric, MAP) {
@ -139,4 +149,5 @@ TEST(Metric, MAP) {
{0.1f, 0.9f, 0.1f, 0.9f},
{ 0, 0, 1, 1}),
0.25f, 0.001f);
delete metric;
}

View File

@ -17,4 +17,6 @@ TEST(Objective, HingeObj) {
{ eps, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, eps });
ASSERT_NO_THROW(obj->DefaultEvalMetric());
delete obj;
}

View File

@ -4,6 +4,8 @@
#include "../helpers.h"
TEST(Objective, UnknownFunction) {
EXPECT_ANY_THROW(xgboost::ObjFunction::Create("unknown_name"));
EXPECT_NO_THROW(xgboost::ObjFunction::Create("reg:linear"));
xgboost::ObjFunction* obj;
EXPECT_ANY_THROW(obj = xgboost::ObjFunction::Create("unknown_name"));
EXPECT_NO_THROW(obj = xgboost::ObjFunction::Create("reg:linear"));
delete obj;
}

View File

@ -25,4 +25,6 @@ TEST(Objective, PairwiseRankingGPair) {
{0.9975f, 0.9975f, 0.9975f, 0.9975f});
ASSERT_NO_THROW(obj->DefaultEvalMetric());
}
delete obj;
}

View File

@ -15,6 +15,8 @@ TEST(Objective, LinearRegressionGPair) {
{1, 1, 1, 1, 1, 1, 1, 1});
ASSERT_NO_THROW(obj->DefaultEvalMetric());
delete obj;
}
TEST(Objective, LogisticRegressionGPair) {
@ -27,6 +29,8 @@ TEST(Objective, LogisticRegressionGPair) {
{ 1, 1, 1, 1, 1, 1, 1, 1},
{ 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f},
{0.25f, 0.24f, 0.20f, 0.19f, 0.25f, 0.24f, 0.20f, 0.19f});
delete obj;
}
TEST(Objective, LogisticRegressionBasic) {
@ -53,6 +57,8 @@ TEST(Objective, LogisticRegressionBasic) {
for (int i = 0; i < static_cast<int>(io_preds.Size()); ++i) {
EXPECT_NEAR(preds[i], out_preds[i], 0.01f);
}
delete obj;
}
TEST(Objective, LogisticRawGPair) {
@ -65,6 +71,8 @@ TEST(Objective, LogisticRawGPair) {
{ 1, 1, 1, 1, 1, 1, 1, 1},
{ 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f},
{0.25f, 0.24f, 0.20f, 0.19f, 0.25f, 0.24f, 0.20f, 0.19f});
delete obj;
}
TEST(Objective, PoissonRegressionGPair) {
@ -78,6 +86,8 @@ TEST(Objective, PoissonRegressionGPair) {
{ 1, 1, 1, 1, 1, 1, 1, 1},
{ 1, 1.10f, 2.45f, 2.71f, 0, 0.10f, 1.45f, 1.71f},
{1.10f, 1.22f, 2.71f, 3.00f, 1.10f, 1.22f, 2.71f, 3.00f});
delete obj;
}
TEST(Objective, PoissonRegressionBasic) {
@ -102,6 +112,8 @@ TEST(Objective, PoissonRegressionBasic) {
for (int i = 0; i < static_cast<int>(io_preds.Size()); ++i) {
EXPECT_NEAR(preds[i], out_preds[i], 0.01f);
}
delete obj;
}
TEST(Objective, GammaRegressionGPair) {
@ -114,6 +126,8 @@ TEST(Objective, GammaRegressionGPair) {
{1, 1, 1, 1, 1, 1, 1, 1},
{1, 1, 1, 1, 0, 0.09f, 0.59f, 0.63f},
{0, 0, 0, 0, 1, 0.90f, 0.40f, 0.36f});
delete obj;
}
TEST(Objective, GammaRegressionBasic) {
@ -138,6 +152,8 @@ TEST(Objective, GammaRegressionBasic) {
for (int i = 0; i < static_cast<int>(io_preds.Size()); ++i) {
EXPECT_NEAR(preds[i], out_preds[i], 0.01f);
}
delete obj;
}
TEST(Objective, TweedieRegressionGPair) {
@ -151,6 +167,8 @@ TEST(Objective, TweedieRegressionGPair) {
{ 1, 1, 1, 1, 1, 1, 1, 1},
{ 1, 1.09f, 2.24f, 2.45f, 0, 0.10f, 1.33f, 1.55f},
{0.89f, 0.98f, 2.02f, 2.21f, 1, 1.08f, 2.11f, 2.30f});
delete obj;
}
TEST(Objective, TweedieRegressionBasic) {
@ -175,6 +193,8 @@ TEST(Objective, TweedieRegressionBasic) {
for (int i = 0; i < static_cast<int>(io_preds.Size()); ++i) {
EXPECT_NEAR(preds[i], out_preds[i], 0.01f);
}
delete obj;
}
TEST(Objective, CoxRegressionGPair) {
@ -187,4 +207,6 @@ TEST(Objective, CoxRegressionGPair) {
{ 1, 1, 1, 1, 1, 1, 1, 1},
{ 0, 0, 0, -0.799f, -0.788f, -0.590f, 0.910f, 1.006f},
{ 0, 0, 0, 0.160f, 0.186f, 0.348f, 0.610f, 0.639f});
delete obj;
}

View File

@ -17,6 +17,8 @@ TEST(Objective, GPULinearRegressionGPair) {
{1, 1, 1, 1, 1, 1, 1, 1});
ASSERT_NO_THROW(obj->DefaultEvalMetric());
delete obj;
}
TEST(Objective, GPULogisticRegressionGPair) {
@ -29,6 +31,8 @@ TEST(Objective, GPULogisticRegressionGPair) {
{ 1, 1, 1, 1, 1, 1, 1, 1},
{ 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f},
{0.25f, 0.24f, 0.20f, 0.19f, 0.25f, 0.24f, 0.20f, 0.19f});
delete obj;
}
TEST(Objective, GPULogisticRegressionBasic) {
@ -55,6 +59,8 @@ TEST(Objective, GPULogisticRegressionBasic) {
for (int i = 0; i < static_cast<int>(io_preds.Size()); ++i) {
EXPECT_NEAR(preds[i], out_preds[i], 0.01f);
}
delete obj;
}
TEST(Objective, GPULogisticRawGPair) {
@ -67,4 +73,6 @@ TEST(Objective, GPULogisticRawGPair) {
{ 1, 1, 1, 1, 1, 1, 1, 1},
{ 0.5f, 0.52f, 0.71f, 0.73f, -0.5f, -0.47f, -0.28f, -0.26f},
{0.25f, 0.24f, 0.20f, 0.19f, 0.25f, 0.24f, 0.20f, 0.19f});
delete obj;
}

View File

@ -25,14 +25,14 @@ TEST(cpu_predictor, Test) {
// Test predict batch
HostDeviceVector<float> out_predictions;
cpu_predictor->PredictBatch(dmat.get(), &out_predictions, model, 0);
cpu_predictor->PredictBatch((*dmat).get(), &out_predictions, model, 0);
std::vector<float>& out_predictions_h = out_predictions.HostVector();
for (int i = 0; i < out_predictions.Size(); i++) {
ASSERT_EQ(out_predictions_h[i], 1.5);
}
// Test predict instance
auto batch = dmat->RowIterator()->Value();
auto batch = (*dmat)->RowIterator()->Value();
for (int i = 0; i < batch.Size(); i++) {
std::vector<float> instance_out_predictions;
cpu_predictor->PredictInstance(batch[i], &instance_out_predictions, model);
@ -41,22 +41,24 @@ TEST(cpu_predictor, Test) {
// Test predict leaf
std::vector<float> leaf_out_predictions;
cpu_predictor->PredictLeaf(dmat.get(), &leaf_out_predictions, model);
cpu_predictor->PredictLeaf((*dmat).get(), &leaf_out_predictions, model);
for (int i = 0; i < leaf_out_predictions.size(); i++) {
ASSERT_EQ(leaf_out_predictions[i], 0);
}
// Test predict contribution
std::vector<float> out_contribution;
cpu_predictor->PredictContribution(dmat.get(), &out_contribution, model);
cpu_predictor->PredictContribution((*dmat).get(), &out_contribution, model);
for (int i = 0; i < out_contribution.size(); i++) {
ASSERT_EQ(out_contribution[i], 1.5);
}
// Test predict contribution (approximate method)
cpu_predictor->PredictContribution(dmat.get(), &out_contribution, model, true);
cpu_predictor->PredictContribution((*dmat).get(), &out_contribution, model, true);
for (int i = 0; i < out_contribution.size(); i++) {
ASSERT_EQ(out_contribution[i], 1.5);
}
delete dmat;
}
} // namespace xgboost

View File

@ -35,8 +35,8 @@ TEST(gpu_predictor, Test) {
// Test predict batch
HostDeviceVector<float> gpu_out_predictions;
HostDeviceVector<float> cpu_out_predictions;
gpu_predictor->PredictBatch(dmat.get(), &gpu_out_predictions, model, 0);
cpu_predictor->PredictBatch(dmat.get(), &cpu_out_predictions, model, 0);
gpu_predictor->PredictBatch((*dmat).get(), &gpu_out_predictions, model, 0);
cpu_predictor->PredictBatch((*dmat).get(), &cpu_out_predictions, model, 0);
std::vector<float>& gpu_out_predictions_h = gpu_out_predictions.HostVector();
std::vector<float>& cpu_out_predictions_h = cpu_out_predictions.HostVector();
float abs_tolerance = 0.001;
@ -45,7 +45,7 @@ TEST(gpu_predictor, Test) {
abs_tolerance);
}
// Test predict instance
auto batch = dmat->RowIterator()->Value();
auto batch = (*dmat)->RowIterator()->Value();
for (int i = 0; i < batch.Size(); i++) {
std::vector<float> gpu_instance_out_predictions;
std::vector<float> cpu_instance_out_predictions;
@ -59,8 +59,8 @@ TEST(gpu_predictor, Test) {
// Test predict leaf
std::vector<float> gpu_leaf_out_predictions;
std::vector<float> cpu_leaf_out_predictions;
cpu_predictor->PredictLeaf(dmat.get(), &cpu_leaf_out_predictions, model);
gpu_predictor->PredictLeaf(dmat.get(), &gpu_leaf_out_predictions, model);
cpu_predictor->PredictLeaf((*dmat).get(), &cpu_leaf_out_predictions, model);
gpu_predictor->PredictLeaf((*dmat).get(), &gpu_leaf_out_predictions, model);
for (int i = 0; i < gpu_leaf_out_predictions.size(); i++) {
ASSERT_EQ(gpu_leaf_out_predictions[i], cpu_leaf_out_predictions[i]);
}
@ -68,11 +68,13 @@ TEST(gpu_predictor, Test) {
// Test predict contribution
std::vector<float> gpu_out_contribution;
std::vector<float> cpu_out_contribution;
cpu_predictor->PredictContribution(dmat.get(), &cpu_out_contribution, model);
gpu_predictor->PredictContribution(dmat.get(), &gpu_out_contribution, model);
cpu_predictor->PredictContribution((*dmat).get(), &cpu_out_contribution, model);
gpu_predictor->PredictContribution((*dmat).get(), &gpu_out_contribution, model);
for (int i = 0; i < gpu_out_contribution.size(); i++) {
ASSERT_EQ(gpu_out_contribution[i], cpu_out_contribution[i]);
}
delete dmat;
}
} // namespace predictor
} // namespace xgboost

View File

@ -1,5 +1,6 @@
// Copyright by Contributors
#include <gtest/gtest.h>
#include <vector>
#include "helpers.h"
#include "xgboost/learner.h"
@ -7,8 +8,11 @@ namespace xgboost {
TEST(learner, Test) {
typedef std::pair<std::string, std::string> arg;
auto args = {arg("tree_method", "exact")};
auto mat = {CreateDMatrix(10, 10, 0)};
auto mat_ptr = CreateDMatrix(10, 10, 0);
std::vector<std::shared_ptr<xgboost::DMatrix>> mat = {*mat_ptr};
auto learner = std::unique_ptr<Learner>(Learner::Create(mat));
learner->Configure(args);
delete mat_ptr;
}
} // namespace xgboost
} // namespace xgboost

View File

@ -19,11 +19,11 @@ TEST(gpu_hist_experimental, TestSparseShard) {
int max_bins = 4;
auto dmat = CreateDMatrix(rows, columns, 0.9f);
common::GHistIndexMatrix gmat;
gmat.Init(dmat.get(),max_bins);
gmat.Init((*dmat).get(),max_bins);
TrainParam p;
p.max_depth = 6;
dmlc::DataIter<SparsePage>* iter = dmat->RowIterator();
dmlc::DataIter<SparsePage>* iter = (*dmat)->RowIterator();
iter->BeforeFirst();
CHECK(iter->Next());
const SparsePage& batch = iter->Value();
@ -50,6 +50,8 @@ TEST(gpu_hist_experimental, TestSparseShard) {
ASSERT_EQ(gidx[i * shard.row_stride + row_offset], shard.null_gidx_value);
}
}
delete dmat;
}
TEST(gpu_hist_experimental, TestDenseShard) {
@ -58,11 +60,11 @@ TEST(gpu_hist_experimental, TestDenseShard) {
int max_bins = 4;
auto dmat = CreateDMatrix(rows, columns, 0);
common::GHistIndexMatrix gmat;
gmat.Init(dmat.get(),max_bins);
gmat.Init((*dmat).get(),max_bins);
TrainParam p;
p.max_depth = 6;
dmlc::DataIter<SparsePage>* iter = dmat->RowIterator();
dmlc::DataIter<SparsePage>* iter = (*dmat)->RowIterator();
iter->BeforeFirst();
CHECK(iter->Next());
const SparsePage& batch = iter->Value();
@ -82,6 +84,8 @@ TEST(gpu_hist_experimental, TestDenseShard) {
for (int i = 0; i < gmat.index.size(); i++) {
ASSERT_EQ(gidx[i], gmat.index[i]);
}
delete dmat;
}
} // namespace tree

View File

@ -149,9 +149,39 @@ if [ ${TASK} == "cpp_test" ]; then
make cover
fi
if [ ${TASK} == "distributed_test" ]; then
set -e
make all || exit -1
cd tests/distributed
./runtests.sh
fi
if [ ${TASK} == "sanitizer_test" ]; then
set -e
# Build gtest via cmake
wget -nc https://github.com/google/googletest/archive/release-1.7.0.zip
unzip -n release-1.7.0.zip
mv googletest-release-1.7.0 gtest && cd gtest
CC=gcc-7 CXX=g++-7 cmake -DCMAKE_CXX_FLAGS="-fuse-ld=gold" \
-DCMAKE_C_FLAGS="-fuse-ld=gold"
make
mkdir lib && mv libgtest.a lib
cd ..
rm -rf release-1.7.0.zip
mkdir build && cd build
CC=gcc-7 CXX=g++-7 cmake .. -DGOOGLE_TEST=ON -DGTEST_ROOT=$PWD/../gtest/ \
-DUSE_SANITIZER=ON -DENABLED_SANITIZERS="address" \
-DCMAKE_BUILD_TYPE=Debug \
-DSANITIZER_PATH=/usr/lib/x86_64-linux-gnu/ \
-DCMAKE_CXX_FLAGS="-fuse-ld=gold" \
-DCMAKE_C_FLAGS="-fuse-ld=gold"
make
cd ..
export ASAN_SYMBOLIZER_PATH=$(which llvm-symbolizer)
ASAN_OPTIONS=symbolize=1 ./testxgboost
rm -rf build
exit 0
fi