* GPU binning and compression. - binning and index compression are done inside the DeviceShard constructor - in case of a DMatrix with multiple row batches, it is first converted into a single row batch
96 lines
3.0 KiB
C++
96 lines
3.0 KiB
C++
#include "./helpers.h"
|
|
#include "xgboost/c_api.h"
|
|
#include <random>
|
|
|
|
std::string TempFileName() {
|
|
return std::tmpnam(nullptr);
|
|
}
|
|
|
|
bool FileExists(const std::string name) {
|
|
struct stat st;
|
|
return stat(name.c_str(), &st) == 0;
|
|
}
|
|
|
|
long GetFileSize(const std::string filename) {
|
|
struct stat st;
|
|
stat(filename.c_str(), &st);
|
|
return st.st_size;
|
|
}
|
|
|
|
std::string CreateSimpleTestData() {
|
|
return CreateBigTestData(6);
|
|
}
|
|
|
|
std::string CreateBigTestData(size_t n_entries) {
|
|
std::string tmp_file = TempFileName();
|
|
std::ofstream fo;
|
|
fo.open(tmp_file);
|
|
const size_t entries_per_row = 3;
|
|
size_t n_rows = (n_entries + entries_per_row - 1) / entries_per_row;
|
|
for (size_t i = 0; i < n_rows; ++i) {
|
|
const char* row = i % 2 == 0 ? " 0:0 1:10 2:20\n" : " 0:0 3:30 4:40\n";
|
|
fo << i << row;
|
|
}
|
|
fo.close();
|
|
return tmp_file;
|
|
}
|
|
|
|
void CheckObjFunction(xgboost::ObjFunction * obj,
|
|
std::vector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights,
|
|
std::vector<xgboost::bst_float> out_grad,
|
|
std::vector<xgboost::bst_float> out_hess) {
|
|
xgboost::MetaInfo info;
|
|
info.num_row_ = labels.size();
|
|
info.labels_ = labels;
|
|
info.weights_ = weights;
|
|
|
|
xgboost::HostDeviceVector<xgboost::bst_float> in_preds(preds);
|
|
|
|
xgboost::HostDeviceVector<xgboost::GradientPair> out_gpair;
|
|
obj->GetGradient(&in_preds, info, 1, &out_gpair);
|
|
std::vector<xgboost::GradientPair>& gpair = out_gpair.HostVector();
|
|
|
|
ASSERT_EQ(gpair.size(), in_preds.Size());
|
|
for (int i = 0; i < static_cast<int>(gpair.size()); ++i) {
|
|
EXPECT_NEAR(gpair[i].GetGrad(), out_grad[i], 0.01)
|
|
<< "Unexpected grad for pred=" << preds[i] << " label=" << labels[i]
|
|
<< " weight=" << weights[i];
|
|
EXPECT_NEAR(gpair[i].GetHess(), out_hess[i], 0.01)
|
|
<< "Unexpected hess for pred=" << preds[i] << " label=" << labels[i]
|
|
<< " weight=" << weights[i];
|
|
}
|
|
}
|
|
|
|
xgboost::bst_float GetMetricEval(xgboost::Metric * metric,
|
|
std::vector<xgboost::bst_float> preds,
|
|
std::vector<xgboost::bst_float> labels,
|
|
std::vector<xgboost::bst_float> weights) {
|
|
xgboost::MetaInfo info;
|
|
info.num_row_ = labels.size();
|
|
info.labels_ = labels;
|
|
info.weights_ = weights;
|
|
return metric->Eval(preds, info, false);
|
|
}
|
|
|
|
std::shared_ptr<xgboost::DMatrix> CreateDMatrix(int rows, int columns,
|
|
float sparsity, int seed) {
|
|
const float missing_value = -1;
|
|
std::vector<float> test_data(rows * columns);
|
|
std::mt19937 gen(seed);
|
|
std::uniform_real_distribution<float> dis(0.0f, 1.0f);
|
|
for (auto &e : test_data) {
|
|
if (dis(gen) < sparsity) {
|
|
e = missing_value;
|
|
} else {
|
|
e = dis(gen);
|
|
}
|
|
}
|
|
|
|
DMatrixHandle handle;
|
|
XGDMatrixCreateFromMat(test_data.data(), rows, columns, missing_value,
|
|
&handle);
|
|
return *static_cast<std::shared_ptr<xgboost::DMatrix> *>(handle);
|
|
}
|