41 Commits

Author SHA1 Message Date
Jiaming Yuan
674c409e9d
Remove rabit dependency on public headers. (#6005) 2020-08-13 08:26:20 +08:00
Alexander Gugel
970b4b3fa2
Add XGBoosterGetNumFeature (#5856)
- add GetNumFeature to Learner
- add XGBoosterGetNumFeature to C API
- update c-api-demo accordingly
2020-07-13 23:25:17 -07:00
Philip Hyunsu Cho
1d22a9be1c
Revert "Reorder includes. (#5749)" (#5771)
This reverts commit d3a0efbf162f3dceaaf684109e1178c150b32de3.
2020-06-09 10:29:28 -07:00
Jiaming Yuan
d3a0efbf16
Reorder includes. (#5749)
* Reorder includes.

* R.
2020-06-03 17:30:47 +12:00
Jiaming Yuan
0012f2ef93
Upgrade clang-tidy on CI. (#5469)
* Correct all clang-tidy errors.
* Upgrade clang-tidy to 10 on CI.

Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
2020-04-05 04:42:29 +08:00
Jiaming Yuan
a9313802ea
Fix dump model. (#5485) 2020-04-05 03:52:54 +08:00
Jiaming Yuan
6601a641d7
Thread safe, inplace prediction. (#5389)
Normal prediction with DMatrix is now thread safe with locks.  Added inplace prediction is lock free thread safe.

When data is on device (cupy, cudf), the returned data is also on device.

* Implementation for numpy, csr, cudf and cupy.

* Implementation for dask.

* Remove sync in simple dmatrix.
2020-03-30 15:35:28 +08:00
Jiaming Yuan
0dd97c206b
Move thread local entry into Learner. (#5396)
* Move thread local entry into Learner.

This is an attempt to workaround CUDA context issue in static variable, where
the CUDA context can be released before device vector.

* Add PredictionEntry to thread local entry.

This eliminates one copy of prediction vector.

* Don't define CUDA C API in a namespace.
2020-03-07 15:37:39 +08:00
Jiaming Yuan
0110754a76
Remove update prediction cache from predictors. (#5312)
Move this function into gbtree, and uses only updater for doing so. As now the predictor knows exactly how many trees to predict, there's no need for it to update the prediction cache.
2020-02-17 11:35:47 +08:00
Jiaming Yuan
911a902835
Merge model compatibility fixes from 1.0rc branch. (#5305)
* Port test model compatibility.
* Port logit model fix.

https://github.com/dmlc/xgboost/pull/5248
https://github.com/dmlc/xgboost/pull/5281
2020-02-13 20:41:58 +08:00
Jiaming Yuan
29eeea709a
Pass shared pointer instead of raw pointer to Learner. (#5302)
Extracted from https://github.com/dmlc/xgboost/pull/5220 .
2020-02-11 14:16:38 +08:00
Kodi Arfer
f100b8d878 [Breaking] Don't drop trees during DART prediction by default (#5115)
* Simplify DropTrees calling logic

* Add `training` parameter for prediction method.

* [Breaking]: Add `training` to C API.

* Change for R and Python custom objective.

* Correct comment.

Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
Co-authored-by: Jiaming Yuan <jm.yuan@outlook.com>
2020-01-13 21:48:30 +08:00
Jiaming Yuan
3136185bc5
JSON configuration IO. (#5111)
* Add saving/loading JSON configuration.
* Implement Python pickle interface with new IO routines.
* Basic tests for training continuation.
2019-12-15 17:31:53 +08:00
Jiaming Yuan
e089e16e3d
Pass pointer to model parameters. (#5101)
* Pass pointer to model parameters.

This PR de-duplicates most of the model parameters except the one in
`tree_model.h`.  One difficulty is `base_score` is a model property but can be
changed at runtime by objective function.  Hence when performing model IO, we
need to save the one provided by users, instead of the one transformed by
objective.  Here we created an immutable version of `LearnerModelParam` that
represents the value of model parameter after configuration.
2019-12-10 12:11:22 +08:00
Jiaming Yuan
ae536756ae
Add Model and Configurable interface. (#4945)
* Apply Configurable to objective functions.
* Apply Model to Learner and Regtree, gbm.
* Add Load/SaveConfig to objs.
* Refactor obj tests to use smart pointer.
* Dummy methods for Save/Load Model.
2019-10-18 01:56:02 -04:00
Jiaming Yuan
f0064c07ab
Refactor configuration [Part II]. (#4577)
* Refactor configuration [Part II].

* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
   parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.

* Learner changes:
** Make `LearnerImpl` the only source of configuration.

    All configurations are stored and carried out by `LearnerImpl::Configure()`.

** Remove booster in C API.

    Originally kept for "compatibility reason", but did not state why.  So here
    we just remove it.

** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`.  Configuration will always be lazy.
** Run `Configure` before every iteration.

* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.

    `GBTree` is now used to dispatch the predictor.

** Remove some GPU Predictor tests.

* IO

No IO changes.  The binary model format stability is tested by comparing
hashing value of save models between two commits
2019-07-20 08:34:56 -04:00
Jiaming Yuan
ae05948e32
Feature interaction for GPU Hist. (#4534)
* GPU hist Interaction Constraints.
* Duplicate related parameters.
* Add tests for CPU interaction constraint.
* Add better error reporting.
* Thorough tests.
2019-06-19 18:11:02 +08:00
Jiaming Yuan
b48f895027
Fix prediction from loaded pickle. (#4516) 2019-05-30 15:05:09 +08:00
Jiaming Yuan
c589eff941
De-duplicate GPU parameters. (#4454)
* Only define `gpu_id` and `n_gpus` in `LearnerTrainParam`
* Pass LearnerTrainParam through XGBoost vid factory method.
* Disable all GPU usage when GPU related parameters are not specified (fixes XGBoost choosing GPU over aggressively).
* Test learner train param io.
* Fix gpu pickling.
2019-05-29 11:55:57 +08:00
Jiaming Yuan
2e618af743
Fix cpplint. (#4157)
* Add comment after #endif.
* Add missing headers.
2019-02-18 00:16:29 +08:00
Philip Hyunsu Cho
91537e7353
Fix #3342 and h2oai/h2o4gpu#625: Save predictor parameters in model file (#3856)
* Fix #3342 and h2oai/h2o4gpu#625: Save predictor parameters in model file

This allows pickled models to retain predictor attributes, such as
'predictor' (whether to use CPU or GPU) and 'n_gpu' (number of GPUs
to use). Related: h2oai/h2o4gpu#625

Closes #3342.

TODO. Write a test.

* Fix lint

* Do not load GPU predictor into CPU-only XGBoost

* Add a test for pickling GPU predictors

* Make sample data big enough to pass multi GPU test

* Update test_gpu_predictor.cu
2018-11-03 21:45:38 -07:00
Rory Mitchell
a96039141a
Dmatrix refactor stage 1 (#3301)
* Use sparse page as singular CSR matrix representation

* Simplify dmatrix methods

* Reduce statefullness of batch iterators

* BREAKING CHANGE: Remove prob_buffer_row parameter. Users are instead recommended to sample their dataset as a preprocessing step before using XGBoost.
2018-06-07 10:25:58 +12:00
Rory Mitchell
ccf80703ef
Clang-tidy static analysis (#3222)
* Clang-tidy static analysis

* Modernise checks

* Google coding standard checks

* Identifier renaming according to Google style
2018-04-19 18:57:13 +12:00
Andrew V. Adinetz
d5992dd881 Replaced std::vector-based interfaces with HostDeviceVector-based interfaces. (#3116)
* Replaced std::vector-based interfaces with HostDeviceVector-based interfaces.

- replacement was performed in the learner, boosters, predictors,
  updaters, and objective functions
- only interfaces used in training were replaced;
  interfaces like PredictInstance() still use std::vector
- refactoring necessary for replacement of interfaces was also performed,
  such as using HostDeviceVector in prediction cache

* HostDeviceVector-based interfaces for custom objective function example plugin.
2018-02-28 13:00:04 +13:00
Scott Lundberg
d878c36c84 Add SHAP interaction effects, fix minor bug, and add cox loss (#3043)
* Add interaction effects and cox loss

* Minimize whitespace changes

* Cox loss now no longer needs a pre-sorted dataset.

* Address code review comments

* Remove mem check, rename to pred_interactions, include bias

* Make lint happy

* More lint fixes

* Fix cox loss indexing

* Fix main effects and tests

* Fix lint

* Use half interaction values on the off-diagonals

* Fix lint again
2018-02-07 20:38:01 -06:00
Scott Lundberg
78c4188cec SHAP values for feature contributions (#2438)
* SHAP values for feature contributions

* Fix commenting error

* New polynomial time SHAP value estimation algorithm

* Update API to support SHAP values

* Fix merge conflicts with updates in master

* Correct submodule hashes

* Fix variable sized stack allocation

* Make lint happy

* Add docs

* Fix typo

* Adjust tolerances

* Remove unneeded def

* Fixed cpp test setup

* Updated R API and cleaned up

* Fixed test typo
2017-10-12 12:35:51 -07:00
Rory Mitchell
0e06d1805d [WIP] Extract prediction into separate interface (#2531)
* [WIP] Extract prediction into separate interface

* Add copyright, fix linter errors

* Add predictor to amalgamation

* Fix documentation

* Move prediction cache into predictor, add GBTreeModel

* Updated predictor doc comments
2017-07-28 17:01:03 -07:00
Vadim Khotilovich
b52db87d5c adding feature contributions to R and gblinear (#2295)
* [gblinear] add features contribution prediction; fix DumpModel bug

* [gbtree] minor changes to PredContrib

* [R] add feature contribution prediction to R

* [R] bump up version; update NEWS

* [gblinear] fix the base_margin issue; fixes #1969

* [R] list of matrices as output of multiclass feature contributions

* [gblinear] make order of DumpModel coefficients consistent: group index changes the fastest
2017-05-21 07:41:51 -04:00
Maurus Cuelenaere
6bd1869026 Add prediction of feature contributions (#2003)
* Add prediction of feature contributions

This implements the idea described at http://blog.datadive.net/interpreting-random-forests/
which tries to give insight in how a prediction is composed of its feature contributions
and a bias.

* Support multi-class models

* Calculate learning_rate per-tree instead of using the one from the first tree

* Do not rely on node.base_weight * learning_rate having the same value as the node mean value (aka leaf value, if it were a leaf); instead calculate them (lazily) on-the-fly

* Add simple test for contributions feature

* Check against param.num_nodes instead of checking for non-zero length

* Loop over all roots instead of only the first
2017-05-14 00:58:10 -05:00
ZhouYong
fee1181803 fix online prediction function in learner.h (#2010)
I use the online prediction function(`inline void Predict(const SparseBatch::Inst &inst, ... ) const;`), the results obtained are different from the results of the batch prediction function(`  virtual void Predict(DMatrix* data, ...) const = 0`). After the investigation found that the online prediction function using the `base_score_` parameters, and the batch prediction function is not used in this parameter. It is found that the `base_score_` values are different when the same model file is loaded many times.

```
1st times:base_score_: 6.69023e-21
2nd times:base_score_: -3.7668e+19
3rd times:base_score_: 5.40507e+07
```
 Online prediction results are affected by `base_score_` parameters. After deleting the if condition(`if (out_preds->size() == 1)`) , the online prediction is consistent with the batch prediction results, and the xgboost prediction results are consistent with python version.  Therefore, it is likely that the online prediction function is bug
2017-03-16 10:35:52 -07:00
Liam Huang
49bdb5c97f fix typo in comment. (#1850) 2016-12-11 19:49:04 +01:00
AbdealiJK
6f16f0ef58 Use bst_float consistently throughout (#1824)
* Fix various typos

* Add override to functions that are overridden

gcc gives warnings about functions that are being overridden by not
being marked as oveirridden. This fixes it.

* Use bst_float consistently

Use bst_float for all the variables that involve weight,
leaf value, gradient, hessian, gain, loss_chg, predictions,
base_margin, feature values.

In some cases, when due to additions and so on the value can
take a larger value, double is used.

This ensures that type conversions are minimal and reduces loss of
precision.
2016-11-30 10:02:10 -08:00
AbdealiJK
b94fcab4dc Add dump_format=json option (#1726)
* Add format to the params accepted by DumpModel

Currently, only the test format is supported when trying to dump
a model. The plan is to add more such formats like JSON which are
easy to read and/or parse by machines. And to make the interface
for this even more generic to allow other formats to be added.

Hence, we make some modifications to make these function generic
and accept a new parameter "format" which signifies the format of
the dump to be created.

* Fix typos and errors in docs

* plugin: Mention all the register macros available

Document the register macros currently available to the plugin
writers so they know what exactly can be extended using hooks.

* sparce_page_source: Use same arg name in .h and .cc

* gbm: Add JSON dump

The dump_format argument can be used to specify what type
of dump file should be created. Add functionality to dump
gblinear and gbtree into a JSON file.

The JSON file has an array, each item is a JSON object for the tree.
For gblinear:
 - The item is the bias and weights vectors
For gbtree:
 - The item is the root node. The root node has a attribute "children"
   which holds the children nodes. This happens recursively.

* core.py: Add arg dump_format for get_dump()
2016-11-04 09:55:25 -07:00
AbdealiJK
378eb7d7c8 Fix typos and messages in docs (#1723) 2016-10-30 22:52:19 -07:00
Tianqi Chen
ecec5f7959 [CORE] Refactor cache mechanism (#1540) 2016-09-02 20:39:07 -07:00
Vadim Khotilovich
ea9285dd4f methods to delete an attribute and get names of available attributes 2016-05-14 18:19:18 -05:00
tqchen
ecb3a271be [PYTHON-DIST] Distributed xgboost python training API. 2016-02-29 16:54:13 -08:00
tqchen
4a16b729fc [PYTHON] Simplify training logic, update rabit lib 2016-02-28 13:20:55 -08:00
tqchen
d75e3ed05d [LIBXGBOOST] pass demo running. 2016-01-16 10:24:01 -08:00
tqchen
0d95e863c9 [LEARNER] refactor learner 2016-01-16 10:24:01 -08:00
tqchen
82ceb4de0a [LEARNER] Init learner interface 2016-01-16 10:24:01 -08:00