[LEARNER] refactor learner

This commit is contained in:
tqchen 2016-01-04 01:31:44 -08:00
parent 4b4b36d047
commit 0d95e863c9
14 changed files with 470 additions and 517 deletions

View File

@ -14,6 +14,9 @@
#include "./base.h"
namespace xgboost {
// forward declare learner.
class LearnerImpl;
/*! \brief data type accepted by xgboost interface */
enum DataType {
kFloat32 = 1,
@ -199,6 +202,8 @@ class DataSource : public dmlc::DataIter<RowBatch> {
*/
class DMatrix {
public:
/*! \brief default constructor */
DMatrix() : cache_learner_ptr_(nullptr) {}
/*! \brief meta information of the dataset */
virtual MetaInfo& info() = 0;
/*! \brief meta information of the dataset */
@ -222,6 +227,7 @@ class DMatrix {
* \param subsample subsample ratio when generating column access.
* \param max_row_perbatch auxilary information, maximum row used in each column batch.
* this is a hint information that can be ignored by the implementation.
* \return Number of column blocks in the column access.
*/
virtual void InitColAccess(const std::vector<bool>& enabled,
float subsample,
@ -229,6 +235,8 @@ class DMatrix {
// the following are column meta data, should be able to answer them fast.
/*! \return whether column access is enabled */
virtual bool HaveColAccess() const = 0;
/*! \return Whether the data columns single column block. */
virtual bool SingleColBlock() const = 0;
/*! \brief get number of non-missing entries in column */
virtual size_t GetColSize(size_t cidx) const = 0;
/*! \brief get column density */
@ -279,6 +287,12 @@ class DMatrix {
*/
static DMatrix* Create(dmlc::Parser<uint32_t>* parser,
const char* cache_prefix = nullptr);
private:
// allow learner class to access this field.
friend class LearnerImpl;
/*! \brief public field to back ref cached matrix. */
LearnerImpl* cache_learner_ptr_;
};
} // namespace xgboost

View File

@ -25,6 +25,14 @@ class GradientBooster {
public:
/*! \brief virtual destructor */
virtual ~GradientBooster() {}
/*!
* \brief set configuration from pair iterators.
* \param begin The beginning iterator.
* \param end The end iterator.
* \tparam PairIter iterator<std::pair<std::string, std::string> >
*/
template<typename PairIter>
inline void Configure(PairIter begin, PairIter end);
/*!
* \brief Set the configuration of gradient boosting.
* User must call configure once before InitModel and Training.
@ -123,9 +131,16 @@ class GradientBooster {
* \breif create a gradient booster from given name
* \param name name of gradient booster
*/
static GradientBooster* Create(const char *name);
static GradientBooster* Create(const std::string& name);
};
// implementing configure.
template<typename PairIter>
inline void GradientBooster::Configure(PairIter begin, PairIter end) {
std::vector<std::pair<std::string, std::string> > vec(begin, end);
this->Configure(vec);
}
/*!
* \brief Registry entry for tree updater.
*/

View File

@ -14,7 +14,7 @@
#include <vector>
#include "./base.h"
#include "./gbm.h"
#include "./meric.h"
#include "./metric.h"
#include "./objective.h"
namespace xgboost {
@ -36,6 +36,14 @@ namespace xgboost {
*/
class Learner : public rabit::Serializable {
public:
/*!
* \brief set configuration from pair iterators.
* \param begin The beginning iterator.
* \param end The end iterator.
* \tparam PairIter iterator<std::pair<std::string, std::string> >
*/
template<typename PairIter>
inline void Configure(PairIter begin, PairIter end);
/*!
* \brief Set the configuration of gradient boosting.
* User must call configure once before InitModel and Training.
@ -59,7 +67,7 @@ class Learner : public rabit::Serializable {
* \param iter current iteration number
* \param train reference to the data matrix.
*/
void UpdateOneIter(int iter, DMatrix* train);
virtual void UpdateOneIter(int iter, DMatrix* train) = 0;
/*!
* \brief Do customized gradient boosting with in_gpair.
* in_gair can be mutated after this call.
@ -67,9 +75,9 @@ class Learner : public rabit::Serializable {
* \param train reference to the data matrix.
* \param in_gpair The input gradient statistics.
*/
void BoostOneIter(int iter,
DMatrix* train,
std::vector<bst_gpair>* in_gpair);
virtual void BoostOneIter(int iter,
DMatrix* train,
std::vector<bst_gpair>* in_gpair) = 0;
/*!
* \brief evaluate the model for specific iteration using the configured metrics.
* \param iter iteration number
@ -77,9 +85,9 @@ class Learner : public rabit::Serializable {
* \param data_names name of each dataset
* \return a string corresponding to the evaluation result
*/
std::string EvalOneIter(int iter,
const std::vector<DMatrix*>& data_sets,
const std::vector<std::string>& data_names);
virtual std::string EvalOneIter(int iter,
const std::vector<DMatrix*>& data_sets,
const std::vector<std::string>& data_names) = 0;
/*!
* \brief get prediction given the model.
* \param data input data
@ -89,11 +97,11 @@ class Learner : public rabit::Serializable {
* predictor, when it equals 0, this means we are using all the trees
* \param pred_leaf whether to only predict the leaf index of each tree in a boosted tree predictor
*/
void Predict(DMatrix* data,
bool output_margin,
std::vector<float> *out_preds,
unsigned ntree_limit = 0,
bool pred_leaf = false) const;
virtual void Predict(DMatrix* data,
bool output_margin,
std::vector<float> *out_preds,
unsigned ntree_limit = 0,
bool pred_leaf = false) const = 0;
/*!
* \return whether the model allow lazy checkpoint in rabit.
*/
@ -151,5 +159,13 @@ inline void Learner::Predict(const SparseBatch::Inst& inst,
obj_->PredTransform(out_preds);
}
}
// implementing configure.
template<typename PairIter>
inline void Learner::Configure(PairIter begin, PairIter end) {
std::vector<std::pair<std::string, std::string> > vec(begin, end);
this->Configure(vec);
}
} // namespace xgboost
#endif // XGBOOST_LEARNER_H_

View File

@ -9,6 +9,7 @@
#include <dmlc/registry.h>
#include <vector>
#include <string>
#include <functional>
#include "./data.h"
#include "./base.h"
@ -42,7 +43,7 @@ class Metric {
* and the name will be matched in the registry.
* \return the created metric.
*/
static Metric* Create(const char *name);
static Metric* Create(const std::string& name);
};
/*!

View File

@ -22,10 +22,18 @@ class ObjFunction {
/*! \brief virtual destructor */
virtual ~ObjFunction() {}
/*!
* \brief Initialize the objective with the specified parameters.
* \brief set configuration from pair iterators.
* \param begin The beginning iterator.
* \param end The end iterator.
* \tparam PairIter iterator<std::pair<std::string, std::string> >
*/
template<typename PairIter>
inline void Configure(PairIter begin, PairIter end);
/*!
* \brief Configure the objective with the specified parameters.
* \param args arguments to the objective function.
*/
virtual void Init(const std::vector<std::pair<std::string, std::string> >& args) = 0;
virtual void Configure(const std::vector<std::pair<std::string, std::string> >& args) = 0;
/*!
* \brief Get gradient over each of predictions, given existing information.
* \param preds prediction of current round
@ -66,9 +74,16 @@ class ObjFunction {
* \brief Create an objective function according to name.
* \param name Name of the objective.
*/
static ObjFunction* Create(const char* name);
static ObjFunction* Create(const std::string& name);
};
// implementing configure.
template<typename PairIter>
inline void ObjFunction::Configure(PairIter begin, PairIter end) {
std::vector<std::pair<std::string, std::string> > vec(begin, end);
this->Configure(vec);
}
/*!
* \brief Registry entry for objective factory functions.
*/

View File

@ -54,7 +54,7 @@ class TreeUpdater {
* \brief Create a tree updater given name
* \param name Name of the tree updater.
*/
static TreeUpdater* Create(const char* name);
static TreeUpdater* Create(const std::string& name);
};
/*!

View File

@ -9,12 +9,67 @@
#define XGBOOST_COMMON_IO_H_
#include <dmlc/io.h>
#include <string>
#include <cstring>
#include "./sync.h"
namespace xgboost {
namespace common {
typedef rabit::utils::MemoryFixSizeBuffer MemoryFixSizeBuffer;
typedef rabit::utils::MemoryBufferStream MemoryBufferStream;
/*!
* \brief Input stream that support additional PeekRead
* operation, besides read.
*/
class PeekableInStream : public dmlc::Stream {
public:
explicit PeekableInStream(dmlc::Stream* strm)
: strm_(strm), buffer_ptr_(0) {}
size_t Read(void* dptr, size_t size) override {
size_t nbuffer = buffer_.length() - buffer_ptr_;
if (nbuffer == 0) return strm_->Read(dptr, size);
if (nbuffer < size) {
std::memcpy(dptr, dmlc::BeginPtr(buffer_) + buffer_ptr_, nbuffer);
buffer_ptr_ += nbuffer;
return nbuffer + strm_->Read(reinterpret_cast<char*>(dptr) + nbuffer,
size - nbuffer);
} else {
std::memcpy(dptr, dmlc::BeginPtr(buffer_) + buffer_ptr_, size);
buffer_ptr_ += size;
return size;
}
}
size_t PeekRead(void* dptr, size_t size) {
size_t nbuffer = buffer_.length() - buffer_ptr_;
if (nbuffer < size) {
buffer_ = buffer_.substr(buffer_ptr_, buffer_.length());
buffer_ptr_ = 0;
buffer_.resize(size);
size_t nadd = strm_->Read(dmlc::BeginPtr(buffer_) + nbuffer, size - nbuffer);
buffer_.resize(nbuffer + nadd);
std::memcpy(dptr, dmlc::BeginPtr(buffer_), buffer_.length());
return buffer_.length();
} else {
std::memcpy(dptr, dmlc::BeginPtr(buffer_) + buffer_ptr_, size);
return size;
}
}
void Write(const void* dptr, size_t size) override {
LOG(FATAL) << "Not implemented";
}
private:
/*! \brief input stream */
dmlc::Stream *strm_;
/*! \brief current buffer pointer */
size_t buffer_ptr_;
/*! \brief internal buffer */
std::string buffer_;
};
} // namespace common
} // namespace xgboost
#endif // XGBOOST_COMMON_IO_H_

View File

@ -1,53 +0,0 @@
/*!
* Copyright 2015 by Contributors
* \file metric_set.h
* \brief additional math utils
* \author Tianqi Chen
*/
#ifndef XGBOOST_COMMON_METRIC_SET_H_
#define XGBOOST_COMMON_METRIC_SET_H_
#include <vector>
#include <string>
namespace xgboost {
namespace common {
/*! \brief helper util to create a set of metrics */
class MetricSet {
inline void AddEval(const char *name) {
using namespace std;
for (size_t i = 0; i < evals_.size(); ++i) {
if (!strcmp(name, evals_[i]->Name())) return;
}
evals_.push_back(CreateEvaluator(name));
}
~EvalSet(void) {
for (size_t i = 0; i < evals_.size(); ++i) {
delete evals_[i];
}
}
inline std::string Eval(const char *evname,
const std::vector<float> &preds,
const MetaInfo &info,
bool distributed = false) {
std::string result = "";
for (size_t i = 0; i < evals_.size(); ++i) {
float res = evals_[i]->Eval(preds, info, distributed);
char tmp[1024];
utils::SPrintf(tmp, sizeof(tmp), "\t%s-%s:%f", evname, evals_[i]->Name(), res);
result += tmp;
}
return result;
}
inline size_t Size(void) const {
return evals_.size();
}
private:
std::vector<const IEvaluator*> evals_;
};
} // namespace common
} // namespace xgboost
#endif // XGBOOST_COMMON_METRIC_SET_H_

View File

@ -39,6 +39,8 @@ struct GBTreeTrainParam : public dmlc::Parameter<GBTreeTrainParam> {
" This option is used to support boosted random forest");
DMLC_DECLARE_FIELD(updater_seq).set_default("grow_colmaker,prune")
.describe("Tree updater sequence.");
// add alias
DMLC_DECLARE_ALIAS(updater_seq, updater);
}
};

View File

@ -19,7 +19,7 @@ DMLC_REGISTRY_ENABLE(::xgboost::GradientBoosterReg);
namespace xgboost {
// implement factory functions
ObjFunction* ObjFunction::Create(const char* name) {
ObjFunction* ObjFunction::Create(const std::string& name) {
auto *e = ::dmlc::Registry< ::xgboost::ObjFunctionReg>::Get()->Find(name);
if (e == nullptr) {
LOG(FATAL) << "Unknown objective function " << name;
@ -27,7 +27,7 @@ ObjFunction* ObjFunction::Create(const char* name) {
return (e->body)();
}
Metric* Metric::Create(const char* name) {
Metric* Metric::Create(const std::string& name) {
std::string buf = name;
std::string prefix = name;
auto pos = buf.find('@');
@ -47,7 +47,7 @@ Metric* Metric::Create(const char* name) {
}
}
TreeUpdater* TreeUpdater::Create(const char* name) {
TreeUpdater* TreeUpdater::Create(const std::string& name) {
auto *e = ::dmlc::Registry< ::xgboost::TreeUpdaterReg>::Get()->Find(name);
if (e == nullptr) {
LOG(FATAL) << "Unknown tree updater " << name;
@ -55,7 +55,7 @@ TreeUpdater* TreeUpdater::Create(const char* name) {
return (e->body)();
}
GradientBooster* GradientBooster::Create(const char* name) {
GradientBooster* GradientBooster::Create(const std::string& name) {
auto *e = ::dmlc::Registry< ::xgboost::GradientBoosterReg>::Get()->Find(name);
if (e == nullptr) {
LOG(FATAL) << "Unknown gbm type " << name;

View File

@ -1,366 +1,301 @@
/*!
* Copyright 2014 by Contributors
* \file learner-inl.hpp
* \brief learning algorithm
* \file learner.cc
* \brief Implementation of learning algorithm.
* \author Tianqi Chen
*/
#ifndef XGBOOST_LEARNER_LEARNER_INL_HPP_
#define XGBOOST_LEARNER_LEARNER_INL_HPP_
#include <xgboost/learner.h>
#include <algorithm>
#include <vector>
#include <utility>
#include <string>
#include <sstream>
#include <limits>
#include "../sync/sync.h"
#include "../utils/io.h"
#include "./objective.h"
#include "./evaluation.h"
#include "../gbm/gbm.h"
#include "./common/io.h"
#include "./common/random.h"
namespace xgboost {
/*! \brief namespace for learning algorithm */
namespace learner {
inline bool Learner::AllowLazyCheckPoint() const {
// implementation of base learner.
bool Learner::AllowLazyCheckPoint() const {
return gbm_->AllowLazyCheckPoint();
}
inline std::vector<std::string>
std::vector<std::string>
Learner::Dump2Text(const FeatureMap& fmap, int option) const {
return gbm_->Dump2Text(fmap, option);
}
// simple routine to convert any data to string
template<typename T>
inline std::string ToString(const T& data) {
std::ostringstream os;
os << data;
return os.str();
}
/*! \brief training parameter for regression */
struct LearnerModelParam
: public dmlc::Parameter<LearnerModelParam> {
/* \brief global bias */
float base_score;
/* \brief number of features */
unsigned num_feature;
/* \brief number of classes, if it is multi-class classification */
int num_class;
/*! \brief reserved field */
int reserved[31];
/*! \brief constructor */
LearnerModelParam() {
std::memset(this, 0, sizeof(LearnerModelParam));
base_score = 0.5f;
}
// declare parameters
DMLC_DECLARE_PARAMETER(LearnerModelParam) {
DMLC_DECLARE_FIELD(base_score).set_default(0.5f)
.describe("Global bias of the model.");
DMLC_DECLARE_FIELD(num_feature).set_default(0)
.describe("Number of features in training data,"\
" this parameter will be automatically detected by learner.");
DMLC_DECLARE_FIELD(num_class).set_default(0).set_lower_bound(0)
.describe("Number of class option for multi-class classifier. "\
" By default equals 0 and corresponds to binary classifier.");
}
};
struct LearnerTrainParam
: public dmlc::Parameter<LearnerTrainParam> {
// stored random seed
int seed;
// whether seed the PRNG each iteration
bool seed_per_iteration;
// data split mode, can be row, col, or none.
int dsplit;
// internal test flag
std::string test_flag;
// maximum buffered row value
float prob_buffer_row;
// declare parameters
DMLC_DECLARE_PARAMETER(LearnerTrainParam) {
DMLC_DECLARE_FIELD(seed).set_default(0)
.describe("Random number seed during training.");
DMLC_DECLARE_FIELD(seed_per_iteration).set_default(false)
.describe("Seed PRNG determnisticly via iterator number, "\
"this option will be switched on automatically on distributed mode.");
DMLC_DECLARE_FIELD(dsplit).set_default(0)
.add_enum("auto", 0)
.add_enum("col", 1)
.add_enum("row", 2)
.describe("Data split mode for distributed trainig. ");
DMLC_DECLARE_FIELD(test_flag).set_default("")
.describe("Internal test flag");
DMLC_DECLARE_FIELD(prob_buffer_row).set_default(1.0f).set_range(0.0f, 1.0f)
.describe("Maximum buffered row portion");
}
};
/*!
* \brief learner that performs gradient boosting for a specific objective function.
* It does training and prediction.
*/
class BoostLearner : public rabit::Serializable {
class LearnerImpl : public Learner {
public:
BoostLearner(void) {
obj_ = NULL;
gbm_ = NULL;
explicit LearnerImpl(const std::vector<DMatrix*>& cache_mats)
noexcept(false) {
// setup the cache setting in constructor.
CHECK_EQ(cache_.size(), 0);
size_t buffer_size = 0;
for (auto it = cache_mats.begin(); it != cache_mats.end(); ++it) {
// avoid duplication.
if (std::find(cache_mats.begin(), it, *it) != it) continue;
DMatrix* pmat = *it;
pmat->cache_learner_ptr_ = this;
cache_.push_back(CacheEntry(pmat, buffer_size, pmat->info().num_row));
buffer_size += pmat->info().num_row;
}
pred_buffer_size_ = buffer_size;
// boosted tree
name_obj_ = "reg:linear";
name_gbm_ = "gbtree";
silent = 0;
prob_buffer_row = 1.0f;
distributed_mode = 0;
updater_mode = 0;
pred_buffer_size = 0;
seed_per_iteration = 0;
seed = 0;
save_base64 = 0;
}
virtual ~BoostLearner(void) {
if (obj_ != NULL) delete obj_;
if (gbm_ != NULL) delete gbm_;
}
/*!
* \brief add internal cache space for mat, this can speedup prediction for matrix,
* please cache prediction for training and eval data
* warning: if the model is loaded from file from some previous training history
* set cache data must be called with exactly SAME
* data matrices to continue training otherwise it will cause error
* \param mats array of pointers to matrix whose prediction result need to be cached
*/
inline void SetCacheData(const std::vector<DMatrix*>& mats) {
utils::Assert(cache_.size() == 0, "can only call cache data once");
// assign buffer index
size_t buffer_size = 0;
for (size_t i = 0; i < mats.size(); ++i) {
bool dupilicate = false;
for (size_t j = 0; j < i; ++j) {
if (mats[i] == mats[j]) dupilicate = true;
}
if (dupilicate) continue;
// set mats[i]'s cache learner pointer to this
mats[i]->cache_learner_ptr_ = this;
cache_.push_back(CacheEntry(mats[i], buffer_size, mats[i]->info.num_row()));
buffer_size += mats[i]->info.num_row();
}
char str_temp[25];
utils::SPrintf(str_temp, sizeof(str_temp), "%lu",
static_cast<unsigned long>(buffer_size)); // NOLINT(*)
this->SetParam("num_pbuffer", str_temp);
this->pred_buffer_size = buffer_size;
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam(const char *name, const char *val) {
using namespace std;
// in this version, bst: prefix is no longer required
if (strncmp(name, "bst:", 4) != 0) {
std::string n = "bst:"; n += name;
this->SetParam(n.c_str(), val);
}
if (!strcmp(name, "silent")) silent = atoi(val);
if (!strcmp(name, "dsplit")) {
if (!strcmp(val, "col")) {
this->SetParam("updater", "distcol");
distributed_mode = 1;
} else if (!strcmp(val, "row")) {
this->SetParam("updater", "grow_histmaker,prune");
distributed_mode = 2;
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
tparam.InitAllowUnknown(args);
// add to configurations
cfg_.clear();
for (const auto& kv : args) {
if (kv.first == "eval_metric") {
// check duplication
auto dup_check = [&kv](const std::unique_ptr<Metric>&m) {
return m->Name() != kv.second;
};
if (std::all_of(metrics_.begin(), metrics_.end(), dup_check)) {
metrics_.emplace_back(Metric::Create(kv.second));
}
} else {
utils::Error("%s is invalid value for dsplit, should be row or col", val);
cfg_[kv.first] = kv.second;
}
}
if (!strcmp(name, "updater_mode")) updater_mode = atoi(val);
if (!strcmp(name, "prob_buffer_row")) {
prob_buffer_row = static_cast<float>(atof(val));
utils::Check(distributed_mode == 0,
"prob_buffer_row can only be used in single node mode so far");
this->SetParam("updater", "grow_colmaker,refresh,prune");
// add additional parameter
// These are cosntraints that need to be satisfied.
if (tparam.dsplit == 0 && rabit::IsDistributed()) {
tparam.dsplit = 2;
}
if (!strcmp(name, "eval_metric")) evaluator_.AddEval(val);
if (!strcmp("seed", name)) {
seed = atoi(val); random::Seed(seed);
if (cfg_.count("num_class") != 0) {
cfg_["num_output_group"] = cfg_["num_class"];
}
if (!strcmp("seed_per_iter", name)) seed_per_iteration = atoi(val);
if (!strcmp("save_base64", name)) save_base64 = atoi(val);
if (!strcmp(name, "num_class")) {
this->SetParam("num_output_group", val);
if (cfg_.count("max_delta_step") == 0 &&
cfg_.count("objective") != 0 &&
cfg_["objective"] == "count:poisson") {
cfg_["max_delta_step"] = "0.7";
}
if (!strcmp(name, "nthread")) {
omp_set_num_threads(atoi(val));
}
if (gbm_ == NULL) {
if (!strcmp(name, "objective")) name_obj_ = val;
if (!strcmp(name, "booster")) name_gbm_ = val;
mparam.SetParam(name, val);
}
if (gbm_ != NULL) gbm_->SetParam(name, val);
if (obj_ != NULL) obj_->SetParam(name, val);
if (gbm_ == NULL || obj_ == NULL) {
cfg_.push_back(std::make_pair(std::string(name), std::string(val)));
}
}
// this is an internal function
// initialize the trainer, called at InitModel and LoadModel
inline void InitTrainer(bool calc_num_feature = true) {
if (calc_num_feature) {
// estimate feature bound
unsigned num_feature = 0;
for (size_t i = 0; i < cache_.size(); ++i) {
num_feature = std::max(num_feature,
static_cast<unsigned>(cache_[i].mat_->info.num_col()));
if (cfg_.count("updater") == 0) {
if (tparam.dsplit == 1) {
cfg_["updater"] = "distcol";
} else if (tparam.dsplit == 2) {
cfg_["updater"] = "grow_histmaker,prune";
}
if (tparam.prob_buffer_row != 1.0f) {
cfg_["updater"] = "grow_histmaker,refresh,prune";
}
// run allreduce on num_feature to find the maximum value
rabit::Allreduce<rabit::op::Max>(&num_feature, 1);
if (num_feature > mparam.num_feature) mparam.num_feature = num_feature;
}
char str_temp[25];
utils::SPrintf(str_temp, sizeof(str_temp), "%d", mparam.num_feature);
this->SetParam("bst:num_feature", str_temp);
if (cfg_.count("objective") == 0) {
cfg_["objective"] = "reg:linear";
}
if (cfg_.count("booster") == 0) {
cfg_["booster"] = "gbtree";
}
if (!this->ModelInitialized()) {
mparam.InitAllowUnknown(args);
name_obj_ = cfg_["objective"];
name_gbm_ = cfg_["booster"];
}
common::GlobalRandom().seed(tparam.seed);
// set number of features correctly.
cfg_["num_feature"] = ToString(mparam.num_feature);
if (gbm_.get() != nullptr) {
gbm_->Configure(cfg_.begin(), cfg_.end());
}
if (obj_.get() != nullptr) {
obj_->Configure(cfg_.begin(), cfg_.end());
}
}
/*!
* \brief initialize the model
*/
inline void InitModel(void) {
this->InitTrainer();
// initialize model
this->InitObjGBM();
// reset the base score
mparam.base_score = obj_->ProbToMargin(mparam.base_score);
// initialize GBM model
gbm_->InitModel();
}
/*!
* \brief load model from stream
* \param fi input stream
* \param calc_num_feature whether call InitTrainer with calc_num_feature
*/
inline void LoadModel(utils::IStream &fi, // NOLINT(*)
bool calc_num_feature = true) {
utils::Check(fi.Read(&mparam, sizeof(ModelParam)) != 0,
"BoostLearner: wrong model format");
void Load(dmlc::Stream* fi) override {
// TODO(tqchen) mark deprecation of old format.
common::PeekableInStream fp(fi);
// backward compatible header check.
std::string header;
header.resize(4);
if (fp.PeekRead(&header[0], 4) == 4) {
CHECK_NE(header, "bs64")
<< "Base64 format is no longer supported in brick.";
if (header == "binf") {
CHECK_EQ(fp.Read(&header[0], 4), 4);
}
}
// use the peekable reader.
fi = &fp;
std::string name_gbm, name_obj;
// read parameter
CHECK_EQ(fi->Read(&mparam, sizeof(mparam)), sizeof(mparam))
<< "BoostLearner: wrong model format";
{
// backward compatibility code for compatible with old model type
// for new model, Read(&name_obj_) is suffice
uint64_t len;
utils::Check(fi.Read(&len, sizeof(len)) != 0, "BoostLearner: wrong model format");
CHECK_EQ(fi->Read(&len, sizeof(len)), sizeof(len));
if (len >= std::numeric_limits<unsigned>::max()) {
int gap;
utils::Check(fi.Read(&gap, sizeof(gap)) != 0, "BoostLearner: wrong model format");
CHECK_EQ(fi->Read(&gap, sizeof(gap)), sizeof(gap))
<< "BoostLearner: wrong model format";
len = len >> static_cast<uint64_t>(32UL);
}
if (len != 0) {
name_obj_.resize(len);
utils::Check(fi.Read(&name_obj_[0], len) != 0, "BoostLearner: wrong model format");
name_obj.resize(len);
CHECK_EQ(fi->Read(&name_obj_[0], len), len)
<<"BoostLearner: wrong model format";
}
}
utils::Check(fi.Read(&name_gbm_), "BoostLearner: wrong model format");
// delete existing gbm if any
if (obj_ != NULL) delete obj_;
if (gbm_ != NULL) delete gbm_;
this->InitTrainer(calc_num_feature);
this->InitObjGBM();
char tmp[32];
utils::SPrintf(tmp, sizeof(tmp), "%u", mparam.num_class);
obj_->SetParam("num_class", tmp);
gbm_->LoadModel(fi, mparam.saved_with_pbuffer != 0);
if (mparam.saved_with_pbuffer == 0) {
gbm_->ResetPredBuffer(pred_buffer_size);
CHECK(fi->Read(&name_gbm_))
<< "BoostLearner: wrong model format";
// duplicated code with LazyInitModel
obj_.reset(ObjFunction::Create(cfg_.at(name_obj_)));
gbm_.reset(GradientBooster::Create(cfg_.at(name_gbm_)));
if (metrics_.size() == 0) {
metrics_.emplace_back(Metric::Create(obj_->DefaultEvalMetric()));
}
this->base_score_ = mparam.base_score;
gbm_->ResetPredBuffer(pred_buffer_size_);
cfg_["num_class"] = ToString(mparam.num_class);
obj_->Configure(cfg_.begin(), cfg_.end());
}
// rabit load model from rabit checkpoint
virtual void Load(rabit::Stream *fi) {
// for row split, we should not keep pbuffer
this->LoadModel(*fi, false);
}
// rabit save model to rabit checkpoint
virtual void Save(rabit::Stream *fo) const {
// for row split, we should not keep pbuffer
this->SaveModel(*fo, distributed_mode != 2);
void Save(dmlc::Stream *fo) const override {
fo->Write(&mparam, sizeof(LearnerModelParam));
fo->Write(name_obj_);
fo->Write(name_gbm_);
gbm_->Save(fo);
}
/*!
* \brief load model from file
* \param fname file name
*/
inline void LoadModel(const char *fname) {
utils::IStream *fi = utils::IStream::Create(fname, "r");
std::string header; header.resize(4);
// check header for different binary encode
// can be base64 or binary
utils::Check(fi->Read(&header[0], 4) != 0, "invalid model");
// base64 format
if (header == "bs64") {
utils::Base64InStream bsin(fi);
bsin.InitPosition();
this->LoadModel(bsin, true);
} else if (header == "binf") {
this->LoadModel(*fi, true);
} else {
delete fi;
fi = utils::IStream::Create(fname, "r");
this->LoadModel(*fi, true);
}
delete fi;
}
inline void SaveModel(utils::IStream &fo, bool with_pbuffer) const { // NOLINT(*)
ModelParam p = mparam;
p.saved_with_pbuffer = static_cast<int>(with_pbuffer);
fo.Write(&p, sizeof(ModelParam));
fo.Write(name_obj_);
fo.Write(name_gbm_);
gbm_->SaveModel(fo, with_pbuffer);
}
/*!
* \brief save model into file
* \param fname file name
* \param with_pbuffer whether save pbuffer together
*/
inline void SaveModel(const char *fname, bool with_pbuffer) const {
utils::IStream *fo = utils::IStream::Create(fname, "w");
if (save_base64 != 0 || !strcmp(fname, "stdout")) {
fo->Write("bs64\t", 5);
utils::Base64OutStream bout(fo);
this->SaveModel(bout, with_pbuffer);
bout.Finish('\n');
} else {
fo->Write("binf", 4);
this->SaveModel(*fo, with_pbuffer);
}
delete fo;
}
/*!
* \brief check if data matrix is ready to be used by training,
* if not initialize it
* \param p_train pointer to the matrix used by training
*/
inline void CheckInit(DMatrix *p_train) {
int ncol = static_cast<int>(p_train->info.info.num_col);
std::vector<bool> enabled(ncol, true);
// set max row per batch to limited value
// in distributed mode, use safe choice otherwise
size_t max_row_perbatch = std::numeric_limits<size_t>::max();
if (updater_mode != 0 || distributed_mode == 2) {
max_row_perbatch = 32UL << 10UL;
}
// initialize column access
p_train->fmat()->InitColAccess(enabled,
prob_buffer_row,
max_row_perbatch);
const int kMagicPage = 0xffffab02;
// check, if it is DMatrixPage, then use hist maker
if (p_train->magic == kMagicPage) {
this->SetParam("updater", "grow_histmaker,prune");
}
}
/*!
* \brief update the model for one iteration
* \param iter current iteration number
* \param train reference to the data matrix
*/
inline void UpdateOneIter(int iter, const DMatrix &train) {
if (seed_per_iteration != 0 || rabit::IsDistributed()) {
random::Seed(this->seed * kRandSeedMagic + iter);
void UpdateOneIter(int iter, DMatrix* train) override {
if (tparam.seed_per_iteration || rabit::IsDistributed()) {
common::GlobalRandom().seed(tparam.seed * kRandSeedMagic + iter);
}
this->LazyInitDMatrix(train);
this->LazyInitModel();
this->PredictRaw(train, &preds_);
obj_->GetGradient(preds_, train.info, iter, &gpair_);
gbm_->DoBoost(train.fmat(), this->FindBufferOffset(train), train.info.info, &gpair_);
obj_->GetGradient(preds_, train->info(), iter, &gpair_);
gbm_->DoBoost(train, this->FindBufferOffset(train), &gpair_);
}
/*!
* \brief whether model allow lazy checkpoint
*/
inline bool AllowLazyCheckPoint(void) const {
return gbm_->AllowLazyCheckPoint();
}
/*!
* \brief evaluate the model for specific iteration
* \param iter iteration number
* \param evals datas i want to evaluate
* \param evname name of each dataset
* \return a string corresponding to the evaluation result
*/
inline std::string EvalOneIter(int iter,
const std::vector<const DMatrix*> &evals,
const std::vector<std::string> &evname) {
std::string res;
char tmp[256];
utils::SPrintf(tmp, sizeof(tmp), "[%d]", iter);
res = tmp;
for (size_t i = 0; i < evals.size(); ++i) {
this->PredictRaw(*evals[i], &preds_);
obj_->EvalTransform(&preds_);
res += evaluator_.Eval(evname[i].c_str(), preds_, evals[i]->info, distributed_mode == 2);
void BoostOneIter(int iter,
DMatrix* train,
std::vector<bst_gpair>* in_gpair) override {
if (tparam.seed_per_iteration || rabit::IsDistributed()) {
common::GlobalRandom().seed(tparam.seed * kRandSeedMagic + iter);
}
return res;
gbm_->DoBoost(train, this->FindBufferOffset(train), in_gpair);
}
/*!
* \brief simple evaluation function, with a specified metric
* \param data input data
* \param metric name of metric
* \return a pair of <evaluation name, result>
*/
std::pair<std::string, float> Evaluate(const DMatrix &data, std::string metric) {
std::string EvalOneIter(int iter,
const std::vector<DMatrix*>& data_sets,
const std::vector<std::string>& data_names) override {
std::ostringstream os;
os << '[' << iter << ']';
for (size_t i = 0; i < data_sets.size(); ++i) {
this->PredictRaw(data_sets[i], &preds_);
obj_->EvalTransform(&preds_);
for (auto& ev : metrics_) {
os << '\t' << data_names[i] << '-' << ev->Name() << ':'
<< ev->Eval(preds_, data_sets[i]->info(), tparam.dsplit == 2);
}
}
return os.str();
}
std::pair<std::string, float> Evaluate(DMatrix* data, std::string metric) {
if (metric == "auto") metric = obj_->DefaultEvalMetric();
IEvaluator *ev = CreateEvaluator(metric.c_str());
std::unique_ptr<Metric> ev(Metric::Create(metric.c_str()));
this->PredictRaw(data, &preds_);
obj_->EvalTransform(&preds_);
float res = ev->Eval(preds_, data.info);
delete ev;
return std::make_pair(metric, res);
return std::make_pair(metric, ev->Eval(preds_, data->info(), tparam.dsplit == 2));
}
/*!
* \brief get prediction
* \param data input data
* \param output_margin whether to only predict margin value instead of transformed prediction
* \param out_preds output vector that stores the prediction
* \param ntree_limit limit number of trees used for boosted tree
* predictor, when it equals 0, this means we are using all the trees
* \param pred_leaf whether to only predict the leaf index of each tree in a boosted tree predictor
*/
inline void Predict(const DMatrix &data,
bool output_margin,
std::vector<float> *out_preds,
unsigned ntree_limit = 0,
bool pred_leaf = false) const {
void Predict(DMatrix* data,
bool output_margin,
std::vector<float> *out_preds,
unsigned ntree_limit,
bool pred_leaf) const override {
if (pred_leaf) {
gbm_->PredictLeaf(data.fmat(), data.info.info, out_preds, ntree_limit);
gbm_->PredictLeaf(data, out_preds, ntree_limit);
} else {
this->PredictRaw(data, out_preds, ntree_limit);
if (!output_margin) {
@ -368,63 +303,65 @@ class BoostLearner : public rabit::Serializable {
}
}
}
/*!
* \brief online prediction function, predict score for one instance at a time
* NOTE: use the batch prediction interface if possible, batch prediction is usually
* more efficient than online prediction
* This function is NOT threadsafe, make sure you only call from one thread
*
* \param inst the instance you want to predict
* \param output_margin whether to only predict margin value instead of transformed prediction
* \param out_preds output vector to hold the predictions
* \param ntree_limit limit the number of trees used in prediction
* \sa Predict
*/
inline void Predict(const SparseBatch::Inst &inst,
bool output_margin,
std::vector<float> *out_preds,
unsigned ntree_limit = 0) const {
gbm_->Predict(inst, out_preds, ntree_limit);
if (out_preds->size() == 1) {
(*out_preds)[0] += mparam.base_score;
}
if (!output_margin) {
obj_->PredTransform(out_preds);
}
}
/*! \brief dump model out */
inline std::vector<std::string> DumpModel(const utils::FeatMap& fmap, int option) {
return gbm_->DumpModel(fmap, option);
}
protected:
/*!
* \brief initialize the objective function and GBM,
* if not yet done
*/
inline void InitObjGBM(void) {
if (obj_ != NULL) return;
utils::Assert(gbm_ == NULL, "GBM and obj should be NULL");
obj_ = CreateObjFunction(name_obj_.c_str());
gbm_ = gbm::CreateGradBooster(name_gbm_.c_str());
this->InitAdditionDefaultParam();
// set parameters
for (size_t i = 0; i < cfg_.size(); ++i) {
obj_->SetParam(cfg_[i].first.c_str(), cfg_[i].second.c_str());
gbm_->SetParam(cfg_[i].first.c_str(), cfg_[i].second.c_str());
// check if p_train is ready to used by training.
// if not, initialize the column access.
inline void LazyInitDMatrix(DMatrix *p_train) {
if (p_train->HaveColAccess()) return;
int ncol = static_cast<int>(p_train->info().num_col);
std::vector<bool> enabled(ncol, true);
// set max row per batch to limited value
// in distributed mode, use safe choice otherwise
size_t max_row_perbatch = std::numeric_limits<size_t>::max();
if (tparam.test_flag == "block" || tparam.dsplit == 2) {
max_row_perbatch = 32UL << 10UL;
}
if (evaluator_.Size() == 0) {
evaluator_.AddEval(obj_->DefaultEvalMetric());
// initialize column access
p_train->InitColAccess(enabled,
tparam.prob_buffer_row,
max_row_perbatch);
if (!p_train->SingleColBlock() && cfg_.count("updater") == 0) {
cfg_["updater"] = "grow_histmaker,prune";
if (gbm_.get() != nullptr) {
gbm_->Configure(cfg_.begin(), cfg_.end());
}
}
}
/*!
* \brief additional default value for specific objs
*/
inline void InitAdditionDefaultParam(void) {
if (name_obj_ == "count:poisson") {
obj_->SetParam("max_delta_step", "0.7");
gbm_->SetParam("max_delta_step", "0.7");
// return whether model is already initialized.
inline bool ModelInitialized() const {
return gbm_.get() != nullptr;
}
// lazily initialize the model if it haven't yet been initialized.
inline void LazyInitModel() {
if (this->ModelInitialized()) return;
// estimate feature bound
unsigned num_feature = 0;
for (size_t i = 0; i < cache_.size(); ++i) {
num_feature = std::max(num_feature,
static_cast<unsigned>(cache_[i].mat_->info().num_col));
}
// run allreduce on num_feature to find the maximum value
rabit::Allreduce<rabit::op::Max>(&num_feature, 1);
if (num_feature > mparam.num_feature) {
mparam.num_feature = num_feature;
}
// reset the base score
mparam.base_score = obj_->ProbToMargin(mparam.base_score);
// setup
cfg_["num_feature"] = ToString(mparam.num_feature);
CHECK(obj_.get() == nullptr && gbm_.get() == nullptr);
obj_.reset(ObjFunction::Create(name_obj_));
gbm_.reset(GradientBooster::Create(name_gbm_));
gbm_->Configure(cfg_.begin(), cfg_.end());
obj_->Configure(cfg_.begin(), cfg_.end());
if (metrics_.size() == 0) {
metrics_.emplace_back(Metric::Create(obj_->DefaultEvalMetric()));
}
this->base_score_ = mparam.base_score;
gbm_->ResetPredBuffer(pred_buffer_size_);
}
/*!
* \brief get un-transformed prediction
@ -433,125 +370,76 @@ class BoostLearner : public rabit::Serializable {
* \param ntree_limit limit number of trees used for boosted tree
* predictor, when it equals 0, this means we are using all the trees
*/
inline void PredictRaw(const DMatrix &data,
std::vector<float> *out_preds,
inline void PredictRaw(DMatrix* data,
std::vector<float>* out_preds,
unsigned ntree_limit = 0) const {
gbm_->Predict(data.fmat(), this->FindBufferOffset(data),
data.info.info, out_preds, ntree_limit);
gbm_->Predict(data,
this->FindBufferOffset(data),
out_preds,
ntree_limit);
// add base margin
std::vector<float> &preds = *out_preds;
std::vector<float>& preds = *out_preds;
const bst_omp_uint ndata = static_cast<bst_omp_uint>(preds.size());
if (data.info.base_margin.size() != 0) {
utils::Check(preds.size() == data.info.base_margin.size(),
"base_margin.size does not match with prediction size");
const std::vector<bst_float>& base_margin = data->info().base_margin;
if (base_margin.size() != 0) {
CHECK_EQ(preds.size(), base_margin.size())
<< "base_margin.size does not match with prediction size";
#pragma omp parallel for schedule(static)
for (bst_omp_uint j = 0; j < ndata; ++j) {
preds[j] += data.info.base_margin[j];
preds[j] += base_margin[j];
}
} else {
#pragma omp parallel for schedule(static)
for (bst_omp_uint j = 0; j < ndata; ++j) {
preds[j] += mparam.base_score;
preds[j] += this->base_score_;
}
}
}
/*! \brief training parameter for regression */
struct ModelParam{
/* \brief global bias */
float base_score;
/* \brief number of features */
unsigned num_feature;
/* \brief number of classes, if it is multi-class classification */
int num_class;
/*! \brief whether the model itself is saved with pbuffer */
int saved_with_pbuffer;
/*! \brief reserved field */
int reserved[30];
/*! \brief constructor */
ModelParam(void) {
std::memset(this, 0, sizeof(ModelParam));
base_score = 0.5f;
num_feature = 0;
num_class = 0;
saved_with_pbuffer = 0;
}
/*!
* \brief set parameters from outside
* \param name name of the parameter
* \param val value of the parameter
*/
inline void SetParam(const char *name, const char *val) {
using namespace std;
if (!strcmp("base_score", name)) base_score = static_cast<float>(atof(val));
if (!strcmp("num_class", name)) num_class = atoi(val);
if (!strcmp("bst:num_feature", name)) num_feature = atoi(val);
}
};
// data fields
// stored random seed
int seed;
// whether seed the PRNG each iteration
// this is important for restart from existing iterations
// default set to no, but will auto switch on in distributed mode
int seed_per_iteration;
// save model in base64 encoding
int save_base64;
// silent during training
int silent;
// distributed learning mode, if any, 0:none, 1:col, 2:row
int distributed_mode;
// updater mode, 0:normal, reserved for internal test
int updater_mode;
// cached size of predict buffer
size_t pred_buffer_size;
// maximum buffered row value
float prob_buffer_row;
// evaluation set
EvalSet evaluator_;
size_t pred_buffer_size_;
// model parameter
ModelParam mparam;
// gbm model that back everything
gbm::IGradBooster *gbm_;
// name of gbm model used for training
std::string name_gbm_;
// objective function
IObjFunction *obj_;
// name of objective function
std::string name_obj_;
LearnerModelParam mparam;
// training parameter
LearnerTrainParam tparam;
// configurations
std::vector< std::pair<std::string, std::string> > cfg_;
std::map<std::string, std::string> cfg_;
// name of gbm
std::string name_gbm_;
// name of objective functon
std::string name_obj_;
// temporal storages for prediction
std::vector<float> preds_;
// gradient pairs
std::vector<bst_gpair> gpair_;
protected:
// magic number to transform random seed
private:
/*! \brief random number transformation seed. */
static const int kRandSeedMagic = 127;
// cache entry object that helps handle feature caching
struct CacheEntry {
const DMatrix *mat_;
const DMatrix* mat_;
size_t buffer_offset_;
size_t num_row_;
CacheEntry(const DMatrix *mat, size_t buffer_offset, size_t num_row)
CacheEntry(const DMatrix* mat, size_t buffer_offset, size_t num_row)
:mat_(mat), buffer_offset_(buffer_offset), num_row_(num_row) {}
};
// find internal buffer offset for certain matrix, if not exist, return -1
inline int64_t FindBufferOffset(const DMatrix &mat) const {
inline int64_t FindBufferOffset(const DMatrix* mat) const {
for (size_t i = 0; i < cache_.size(); ++i) {
if (cache_[i].mat_ == &mat && mat.cache_learner_ptr_ == this) {
if (cache_[i].num_row_ == mat.info.num_row()) {
if (cache_[i].mat_ == mat && mat->cache_learner_ptr_ == this) {
if (cache_[i].num_row_ == mat->info().num_row) {
return static_cast<int64_t>(cache_[i].buffer_offset_);
}
}
}
return -1;
}
// data structure field
/*! \brief the entries indicates that we have internal prediction cache */
std::vector<CacheEntry> cache_;
};
} // namespace learner
Learner* Learner::Create(const std::vector<DMatrix*>& cache_data) {
return new LearnerImpl(cache_data);
}
} // namespace xgboost
#endif // XGBOOST_LEARNER_LEARNER_INL_HPP_

View File

@ -30,7 +30,7 @@ class SoftmaxMultiClassObj : public ObjFunction {
explicit SoftmaxMultiClassObj(bool output_prob)
: output_prob_(output_prob) {
}
void Init(const std::vector<std::pair<std::string, std::string> >& args) override {
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.InitAllowUnknown(args);
}
void GetGradient(const std::vector<float>& preds,

View File

@ -32,7 +32,7 @@ struct LambdaRankParam : public dmlc::Parameter<LambdaRankParam> {
// objective for lambda rank
class LambdaRankObj : public ObjFunction {
public:
void Init(const std::vector<std::pair<std::string, std::string> >& args) override {
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.InitAllowUnknown(args);
}
void GetGradient(const std::vector<float>& preds,

View File

@ -76,7 +76,7 @@ struct RegLossParam : public dmlc::Parameter<RegLossParam> {
template<typename Loss>
class RegLossObj : public ObjFunction {
public:
void Init(const std::vector<std::pair<std::string, std::string> >& args) override {
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.InitAllowUnknown(args);
}
void GetGradient(const std::vector<float> &preds,
@ -155,7 +155,7 @@ struct PoissonRegressionParam : public dmlc::Parameter<PoissonRegressionParam> {
class PoissonRegression : public ObjFunction {
public:
// declare functions
void Init(const std::vector<std::pair<std::string, std::string> >& args) override {
void Configure(const std::vector<std::pair<std::string, std::string> >& args) override {
param_.InitAllowUnknown(args);
}