xgboost/include/xgboost/learner.h

179 lines
6.4 KiB
C++

/*!
* Copyright 2015 by Contributors
* \file learner.h
* \brief Learner interface that integrates objective, gbm and evaluation together.
* This is the user facing XGBoost training module.
* \author Tianqi Chen
*/
#ifndef XGBOOST_LEARNER_H_
#define XGBOOST_LEARNER_H_
#include <rabit/rabit.h>
#include <utility>
#include <string>
#include <vector>
#include "./base.h"
#include "./gbm.h"
#include "./metric.h"
#include "./objective.h"
namespace xgboost {
/*!
* \brief Learner class that do trainig and prediction.
* This is the user facing module of xgboost training.
* The Load/Save function corresponds to the model used in python/R.
* \code
*
* std::unique_ptr<Learner> learner(new Learner::Create(cache_mats));
* learner.Configure(configs);
*
* for (int iter = 0; iter < max_iter; ++i) {
* learner->UpdateOneIter(iter, train_mat);
* LOG(INFO) << learner->EvalOneIter(iter, data_sets, data_names);
* }
*
* \endcode
*/
class Learner : public rabit::Serializable {
public:
/*! \brief virtual destructor */
virtual ~Learner() {}
/*!
* \brief set configuration from pair iterators.
* \param begin The beginning iterator.
* \param end The end iterator.
* \tparam PairIter iterator<std::pair<std::string, std::string> >
*/
template<typename PairIter>
inline void Configure(PairIter begin, PairIter end);
/*!
* \brief Set the configuration of gradient boosting.
* User must call configure once before InitModel and Training.
*
* \param cfg configurations on both training and model parameters.
*/
virtual void Configure(const std::vector<std::pair<std::string, std::string> >& cfg) = 0;
/*!
* \brief Initialize the model using the specified configurations via Configure.
* An model have to be either Loaded or initialized before Update/Predict/Save can be called.
*/
virtual void InitModel() = 0;
/*!
* \brief load model from stream
* \param fi input stream.
*/
virtual void Load(dmlc::Stream* fi) = 0;
/*!
* \brief save model to stream.
* \param fo output stream
*/
virtual void Save(dmlc::Stream* fo) const = 0;
/*!
* \brief update the model for one iteration
* With the specified objective function.
* \param iter current iteration number
* \param train reference to the data matrix.
*/
virtual void UpdateOneIter(int iter, DMatrix* train) = 0;
/*!
* \brief Do customized gradient boosting with in_gpair.
* in_gair can be mutated after this call.
* \param iter current iteration number
* \param train reference to the data matrix.
* \param in_gpair The input gradient statistics.
*/
virtual void BoostOneIter(int iter,
DMatrix* train,
std::vector<bst_gpair>* in_gpair) = 0;
/*!
* \brief evaluate the model for specific iteration using the configured metrics.
* \param iter iteration number
* \param data_sets datasets to be evaluated.
* \param data_names name of each dataset
* \return a string corresponding to the evaluation result
*/
virtual std::string EvalOneIter(int iter,
const std::vector<DMatrix*>& data_sets,
const std::vector<std::string>& data_names) = 0;
/*!
* \brief get prediction given the model.
* \param data input data
* \param output_margin whether to only predict margin value instead of transformed prediction
* \param out_preds output vector that stores the prediction
* \param ntree_limit limit number of trees used for boosted tree
* predictor, when it equals 0, this means we are using all the trees
* \param pred_leaf whether to only predict the leaf index of each tree in a boosted tree predictor
*/
virtual void Predict(DMatrix* data,
bool output_margin,
std::vector<float> *out_preds,
unsigned ntree_limit = 0,
bool pred_leaf = false) const = 0;
/*!
* \return whether the model allow lazy checkpoint in rabit.
*/
bool AllowLazyCheckPoint() const;
/*!
* \brief dump the model in text format
* \param fmap feature map that may help give interpretations of feature
* \param option extra option of the dump model
* \return a vector of dump for boosters.
*/
std::vector<std::string> Dump2Text(const FeatureMap& fmap, int option) const;
/*!
* \brief online prediction function, predict score for one instance at a time
* NOTE: use the batch prediction interface if possible, batch prediction is usually
* more efficient than online prediction
* This function is NOT threadsafe, make sure you only call from one thread.
*
* \param inst the instance you want to predict
* \param output_margin whether to only predict margin value instead of transformed prediction
* \param out_preds output vector to hold the predictions
* \param ntree_limit limit the number of trees used in prediction
*/
inline void Predict(const SparseBatch::Inst &inst,
bool output_margin,
std::vector<float> *out_preds,
unsigned ntree_limit = 0) const;
/*!
* \brief Create a new instance of learner.
* \param cache_data The matrix to cache the prediction.
* \return Created learner.
*/
static Learner* Create(const std::vector<DMatrix*>& cache_data);
protected:
/*! \brief internal base score of the model */
bst_float base_score_;
/*! \brief objective function */
std::unique_ptr<ObjFunction> obj_;
/*! \brief The gradient boosted used by the model*/
std::unique_ptr<GradientBooster> gbm_;
/*! \brief The evaluation metrics used to evaluate the model. */
std::vector<std::unique_ptr<Metric> > metrics_;
};
// implementation of inline functions.
inline void Learner::Predict(const SparseBatch::Inst& inst,
bool output_margin,
std::vector<float>* out_preds,
unsigned ntree_limit) const {
gbm_->Predict(inst, out_preds, ntree_limit);
if (out_preds->size() == 1) {
(*out_preds)[0] += base_score_;
}
if (!output_margin) {
obj_->PredTransform(out_preds);
}
}
// implementing configure.
template<typename PairIter>
inline void Learner::Configure(PairIter begin, PairIter end) {
std::vector<std::pair<std::string, std::string> > vec(begin, end);
this->Configure(vec);
}
} // namespace xgboost
#endif // XGBOOST_LEARNER_H_