Fix #3342 and h2oai/h2o4gpu#625: Save predictor parameters in model file (#3856)

* Fix #3342 and h2oai/h2o4gpu#625: Save predictor parameters in model file

This allows pickled models to retain predictor attributes, such as
'predictor' (whether to use CPU or GPU) and 'n_gpu' (number of GPUs
to use). Related: h2oai/h2o4gpu#625

Closes #3342.

TODO. Write a test.

* Fix lint

* Do not load GPU predictor into CPU-only XGBoost

* Add a test for pickling GPU predictors

* Make sample data big enough to pass multi GPU test

* Update test_gpu_predictor.cu
This commit is contained in:
Philip Hyunsu Cho 2018-11-03 21:45:38 -07:00 committed by GitHub
parent e04ab56b57
commit 91537e7353
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
7 changed files with 206 additions and 51 deletions

View File

@ -250,8 +250,6 @@ Rpack: clean_all
cp -r src xgboost/src/src
cp -r include xgboost/src/include
cp -r amalgamation xgboost/src/amalgamation
mkdir -p xgboost/src/tests/cpp
cp tests/cpp/test_learner.h xgboost/src/tests/cpp
mkdir -p xgboost/src/rabit
cp -r rabit/include xgboost/src/rabit/include
cp -r rabit/src xgboost/src/rabit/src

View File

@ -10,6 +10,7 @@
#include <rabit/rabit.h>
#include <utility>
#include <map>
#include <string>
#include <vector>
#include "./base.h"
@ -178,6 +179,12 @@ class Learner : public rabit::Serializable {
*/
static Learner* Create(const std::vector<std::shared_ptr<DMatrix> >& cache_data);
/*!
* \brief Get configuration arguments currently stored by the learner
* \return Key-value pairs representing configuration arguments
*/
virtual const std::map<std::string, std::string>& GetConfigurationArguments() const = 0;
protected:
/*! \brief internal base score of the model */
bst_float base_score_;

View File

@ -7,9 +7,10 @@
#include <dmlc/thread_local.h>
#include <rabit/rabit.h>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <string>
#include <cstring>
#include <memory>
#include "./c_api_error.h"
@ -52,6 +53,7 @@ class Booster {
inline void LazyInit() {
if (!configured_) {
LoadSavedParamFromAttr();
learner_->Configure(cfg_);
configured_ = true;
}
@ -61,6 +63,25 @@ class Booster {
}
}
inline void LoadSavedParamFromAttr() {
// Locate saved parameters from learner attributes
const std::string prefix = "SAVED_PARAM_";
for (const std::string& attr_name : learner_->GetAttrNames()) {
if (attr_name.find(prefix) == 0) {
const std::string saved_param = attr_name.substr(prefix.length());
if (std::none_of(cfg_.begin(), cfg_.end(),
[&](const std::pair<std::string, std::string>& x)
{ return x.first == saved_param; })) {
// If cfg_ contains the parameter already, skip it
// (this is to allow the user to explicitly override its value)
std::string saved_param_value;
CHECK(learner_->GetAttr(attr_name, &saved_param_value));
cfg_.emplace_back(saved_param, saved_param_value);
}
}
}
}
inline void LoadModel(dmlc::Stream* fi) {
learner_->Load(fi);
initialized_ = true;
@ -1149,5 +1170,14 @@ XGB_DLL int XGBoosterSaveRabitCheckpoint(BoosterHandle handle) {
API_END();
}
/* hidden method; only known to C++ test suite */
const std::map<std::string, std::string>&
QueryBoosterConfigurationArguments(BoosterHandle handle) {
CHECK_HANDLE();
auto* bst = static_cast<Booster*>(handle);
bst->LazyInit();
return bst->learner()->GetConfigurationArguments();
}
// force link rabit
static DMLC_ATTRIBUTE_UNUSED int XGBOOST_LINK_RABIT_C_API_ = RabitLinkTag();

View File

@ -13,6 +13,7 @@
#include <limits>
#include <sstream>
#include <string>
#include <ios>
#include <utility>
#include <vector>
#include "./common/common.h"
@ -21,7 +22,6 @@
#include "./common/random.h"
#include "./common/enum_class_param.h"
#include "./common/timer.h"
#include "../tests/cpp/test_learner.h"
namespace {
@ -36,6 +36,26 @@ enum class DataSplitMode : int {
kAuto = 0, kCol = 1, kRow = 2
};
inline bool IsFloat(const std::string& str) {
std::stringstream ss(str);
float f;
return !((ss >> std::noskipws >> f).rdstate() ^ std::ios_base::eofbit);
}
inline bool IsInt(const std::string& str) {
std::stringstream ss(str);
int i;
return !((ss >> std::noskipws >> i).rdstate() ^ std::ios_base::eofbit);
}
inline std::string RenderParamVal(const std::string& str) {
if (IsFloat(str) || IsInt(str)) {
return str;
} else {
return std::string("'") + str + "'";
}
}
} // anonymous namespace
DECLARE_FIELD_ENUM_CLASS(TreeMethod);
@ -152,7 +172,7 @@ DMLC_REGISTER_PARAMETER(LearnerTrainParam);
* \brief learner that performs gradient boosting for a specific objective
* function. It does training and prediction.
*/
class LearnerImpl : public Learner, public LearnerTestHook {
class LearnerImpl : public Learner {
public:
explicit LearnerImpl(std::vector<std::shared_ptr<DMatrix> > cache)
: cache_(std::move(cache)) {
@ -330,6 +350,38 @@ class LearnerImpl : public Learner, public LearnerTestHook {
if (mparam_.contain_extra_attrs != 0) {
std::vector<std::pair<std::string, std::string> > attr;
fi->Read(&attr);
for (auto& kv : attr) {
// Load `predictor`, `n_gpus`, `gpu_id` parameters from extra attributes
const std::string prefix = "SAVED_PARAM_";
if (kv.first.find(prefix) == 0) {
const std::string saved_param = kv.first.substr(prefix.length());
#ifdef XGBOOST_USE_CUDA
if (saved_param == "predictor" || saved_param == "n_gpus"
|| saved_param == "gpu_id") {
cfg_[saved_param] = kv.second;
LOG(INFO)
<< "Parameter '" << saved_param << "' has been recovered from "
<< "the saved model. It will be set to "
<< RenderParamVal(kv.second) << " for prediction. To "
<< "override the predictor behavior, explicitly set '"
<< saved_param << "' parameter as follows:\n"
<< " * Python package: bst.set_param('"
<< saved_param << "', [new value])\n"
<< " * R package: xgb.parameters(bst) <- list("
<< saved_param << " = [new value])\n"
<< " * JVM packages: bst.setParam(\""
<< saved_param << "\", [new value])";
}
#else
if (saved_param == "predictor" && kv.second == "gpu_predictor") {
LOG(INFO) << "Parameter 'predictor' will be set to 'cpu_predictor' "
<< "since XGBoots wasn't compiled with GPU support.";
cfg_["predictor"] = "cpu_predictor";
kv.second = "cpu_predictor";
}
#endif
}
}
attributes_ =
std::map<std::string, std::string>(attr.begin(), attr.end());
}
@ -364,15 +416,28 @@ class LearnerImpl : public Learner, public LearnerTestHook {
extra_attr.emplace_back("count_poisson_max_delta_step", it->second);
}
}
{
// Write `predictor`, `n_gpus`, `gpu_id` parameters as extra attributes
for (const auto& key : std::vector<std::string>{
"predictor", "n_gpus", "gpu_id"}) {
auto it = cfg_.find(key);
if (it != cfg_.end()) {
mparam.contain_extra_attrs = 1;
extra_attr.emplace_back("SAVED_PARAM_" + key, it->second);
}
}
}
fo->Write(&mparam, sizeof(LearnerModelParam));
fo->Write(name_obj_);
fo->Write(name_gbm_);
gbm_->Save(fo);
if (mparam.contain_extra_attrs != 0) {
std::vector<std::pair<std::string, std::string> > attr(
attributes_.begin(), attributes_.end());
attr.insert(attr.end(), extra_attr.begin(), extra_attr.end());
fo->Write(attr);
std::map<std::string, std::string> attr(attributes_);
for (const auto& kv : extra_attr) {
attr[kv.first] = kv.second;
}
fo->Write(std::vector<std::pair<std::string, std::string>>(
attr.begin(), attr.end()));
}
if (name_obj_ == "count:poisson") {
auto it = cfg_.find("max_delta_step");
@ -504,6 +569,10 @@ class LearnerImpl : public Learner, public LearnerTestHook {
}
}
const std::map<std::string, std::string>& GetConfigurationArguments() const override {
return cfg_;
}
protected:
// Revise `tree_method` and `updater` parameters after seeing the training
// data matrix
@ -664,11 +733,6 @@ class LearnerImpl : public Learner, public LearnerTestHook {
std::vector<std::shared_ptr<DMatrix> > cache_;
common::Monitor monitor_;
// diagnostic method reserved for C++ test learner.SelectTreeMethod
std::string GetUpdaterSequence() const override {
return cfg_.at("updater");
}
};
Learner* Learner::Create(

View File

@ -2,11 +2,25 @@
/*!
* Copyright 2017 XGBoost contributors
*/
#include <dmlc/logging.h>
#include <dmlc/filesystem.h>
#include <xgboost/c_api.h>
#include <xgboost/predictor.h>
#include <string>
#include "gtest/gtest.h"
#include "../helpers.h"
namespace {
inline void CheckCAPICall(int ret) {
ASSERT_EQ(ret, 0) << XGBGetLastError();
}
} // namespace anonymous
extern const std::map<std::string, std::string>&
QueryBoosterConfigurationArguments(BoosterHandle handle);
namespace xgboost {
namespace predictor {
@ -77,6 +91,80 @@ TEST(gpu_predictor, Test) {
delete dmat;
}
// Test whether pickling preserves predictor parameters
TEST(gpu_predictor, MGPU_PicklingTest) {
int ngpu;
dh::safe_cuda(cudaGetDeviceCount(&ngpu));
dmlc::TemporaryDirectory tempdir;
const std::string tmp_file = tempdir.path + "/simple.libsvm";
CreateBigTestData(tmp_file, 600);
DMatrixHandle dmat[1];
BoosterHandle bst, bst2;
std::vector<bst_float> label;
for (int i = 0; i < 200; ++i) {
label.push_back((i % 2 ? 1 : 0));
}
// Load data matrix
CheckCAPICall(XGDMatrixCreateFromFile(tmp_file.c_str(), 0, &dmat[0]));
CheckCAPICall(XGDMatrixSetFloatInfo(dmat[0], "label", label.data(), 200));
// Create booster
CheckCAPICall(XGBoosterCreate(dmat, 1, &bst));
// Set parameters
CheckCAPICall(XGBoosterSetParam(bst, "seed", "0"));
CheckCAPICall(XGBoosterSetParam(bst, "base_score", "0.5"));
CheckCAPICall(XGBoosterSetParam(bst, "booster", "gbtree"));
CheckCAPICall(XGBoosterSetParam(bst, "learning_rate", "0.01"));
CheckCAPICall(XGBoosterSetParam(bst, "max_depth", "8"));
CheckCAPICall(XGBoosterSetParam(bst, "objective", "binary:logistic"));
CheckCAPICall(XGBoosterSetParam(bst, "seed", "123"));
CheckCAPICall(XGBoosterSetParam(bst, "tree_method", "gpu_hist"));
CheckCAPICall(XGBoosterSetParam(bst, "n_gpus", std::to_string(ngpu).c_str()));
CheckCAPICall(XGBoosterSetParam(bst, "predictor", "gpu_predictor"));
// Run boosting iterations
for (int i = 0; i < 10; ++i) {
CheckCAPICall(XGBoosterUpdateOneIter(bst, i, dmat[0]));
}
// Delete matrix
CheckCAPICall(XGDMatrixFree(dmat[0]));
// Pickle
const char* dptr;
bst_ulong len;
std::string buf;
CheckCAPICall(XGBoosterGetModelRaw(bst, &len, &dptr));
buf = std::string(dptr, len);
CheckCAPICall(XGBoosterFree(bst));
// Unpickle
CheckCAPICall(XGBoosterCreate(nullptr, 0, &bst2));
CheckCAPICall(XGBoosterLoadModelFromBuffer(bst2, buf.c_str(), len));
{ // Query predictor
const auto& kwargs = QueryBoosterConfigurationArguments(bst2);
ASSERT_EQ(kwargs.at("predictor"), "gpu_predictor");
ASSERT_EQ(kwargs.at("n_gpus"), std::to_string(ngpu).c_str());
}
{ // Change n_gpus and query again
CheckCAPICall(XGBoosterSetParam(bst2, "n_gpus", "1"));
const auto& kwargs = QueryBoosterConfigurationArguments(bst2);
ASSERT_EQ(kwargs.at("n_gpus"), "1");
}
{ // Change predictor and query again
CheckCAPICall(XGBoosterSetParam(bst2, "predictor", "cpu_predictor"));
const auto& kwargs = QueryBoosterConfigurationArguments(bst2);
ASSERT_EQ(kwargs.at("predictor"), "cpu_predictor");
}
CheckCAPICall(XGBoosterFree(bst2));
}
// multi-GPU predictor test
TEST(gpu_predictor, MGPU_Test) {
std::unique_ptr<Predictor> gpu_predictor =

View File

@ -2,20 +2,10 @@
#include <gtest/gtest.h>
#include <vector>
#include "helpers.h"
#include "./test_learner.h"
#include "xgboost/learner.h"
namespace xgboost {
class LearnerTestHookAdapter {
public:
static inline std::string GetUpdaterSequence(const Learner* learner) {
const LearnerTestHook* hook = dynamic_cast<const LearnerTestHook*>(learner);
CHECK(hook) << "LearnerImpl did not inherit from LearnerTestHook";
return hook->GetUpdaterSequence();
}
};
TEST(learner, Test) {
typedef std::pair<std::string, std::string> arg;
auto args = {arg("tree_method", "exact")};
@ -35,20 +25,20 @@ TEST(learner, SelectTreeMethod) {
// Test if `tree_method` can be set
learner->Configure({arg("tree_method", "approx")});
ASSERT_EQ(LearnerTestHookAdapter::GetUpdaterSequence(learner.get()),
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
"grow_histmaker,prune");
learner->Configure({arg("tree_method", "exact")});
ASSERT_EQ(LearnerTestHookAdapter::GetUpdaterSequence(learner.get()),
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
"grow_colmaker,prune");
learner->Configure({arg("tree_method", "hist")});
ASSERT_EQ(LearnerTestHookAdapter::GetUpdaterSequence(learner.get()),
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
"grow_fast_histmaker");
#ifdef XGBOOST_USE_CUDA
learner->Configure({arg("tree_method", "gpu_exact")});
ASSERT_EQ(LearnerTestHookAdapter::GetUpdaterSequence(learner.get()),
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
"grow_gpu,prune");
learner->Configure({arg("tree_method", "gpu_hist")});
ASSERT_EQ(LearnerTestHookAdapter::GetUpdaterSequence(learner.get()),
ASSERT_EQ(learner->GetConfigurationArguments().at("updater"),
"grow_gpu_hist");
#endif

View File

@ -1,22 +0,0 @@
/*!
* Copyright 2018 by Contributors
* \file test_learner.h
* \brief Hook to access implementation class of Learner
* \author Hyunsu Philip Cho
*/
#ifndef XGBOOST_TESTS_CPP_TEST_LEARNER_H_
#define XGBOOST_TESTS_CPP_TEST_LEARNER_H_
#include <string>
namespace xgboost {
class LearnerTestHook {
private:
virtual std::string GetUpdaterSequence() const = 0;
// allow friend access to C++ tests for Learner
friend class LearnerTestHookAdapter;
};
} // namespace xgboost
#endif // XGBOOST_TESTS_CPP_TEST_LEARNER_H_