Jakub Zakrzewski ed6384ecbf [Python] Use appropriate integer types when calling native code. (#2361)
Don't use implicit conversions to c_int, which incidentally happen to work
on (some) 64-bit platforms, but:
* may lead to truncation of the input value to a 32-bit signed int,
* cause segfaults on some 32-bit architectures (tested on Ubuntu ARM,
  but is also the likely cause of issue #1707).

Also, when passing references use explicit 64-bit integers, where needed,
instead of c_ulong, which is not guaranteed to be this large.
2017-06-02 10:16:54 -07:00
2017-05-26 09:40:41 -04:00
2017-05-25 09:27:10 -04:00
2017-05-23 21:47:53 -05:00
2016-01-16 10:24:00 -08:00
2017-03-17 09:40:34 -07:00
2017-05-27 08:38:32 -07:00
2017-03-22 16:22:15 -05:00
2017-05-23 21:47:53 -05:00
2017-04-25 16:37:10 -07:00

eXtreme Gradient Boosting

Build Status Build Status Documentation Status GitHub license CRAN Status Badge PyPI version Gitter chat for developers at https://gitter.im/dmlc/xgboost

Documentation | Resources | Installation | Release Notes | RoadMap

XGBoost is an optimized distributed gradient boosting library designed to be highly efficient, flexible and portable. It implements machine learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel tree boosting (also known as GBDT, GBM) that solve many data science problems in a fast and accurate way. The same code runs on major distributed environment (Hadoop, SGE, MPI) and can solve problems beyond billions of examples.

What's New

Ask a Question

Help to Make XGBoost Better

XGBoost has been developed and used by a group of active community members. Your help is very valuable to make the package better for everyone.

License

© Contributors, 2016. Licensed under an Apache-2 license.

Reference

Description
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
Readme 33 MiB
Languages
C++ 45.5%
Python 20.3%
Cuda 15.2%
R 6.8%
Scala 6.4%
Other 5.6%