* Code comments. * Const accessor to index. * Remove some weird variables in the `Index` class. * Simplify the `MemStackAllocator`.
209 lines
7.7 KiB
C++
209 lines
7.7 KiB
C++
/*!
|
|
* Copyright 2017-2022 by XGBoost Contributors
|
|
* \brief Data type for fast histogram aggregation.
|
|
*/
|
|
#include "gradient_index.h"
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <memory>
|
|
|
|
#include "../common/column_matrix.h"
|
|
#include "../common/hist_util.h"
|
|
#include "../common/threading_utils.h"
|
|
|
|
namespace xgboost {
|
|
|
|
GHistIndexMatrix::GHistIndexMatrix() : columns_{std::make_unique<common::ColumnMatrix>()} {}
|
|
|
|
GHistIndexMatrix::GHistIndexMatrix(DMatrix *x, int32_t max_bin, double sparse_thresh,
|
|
bool sorted_sketch, int32_t n_threads,
|
|
common::Span<float> hess) {
|
|
this->Init(x, max_bin, sparse_thresh, sorted_sketch, n_threads, hess);
|
|
}
|
|
|
|
GHistIndexMatrix::~GHistIndexMatrix() = default;
|
|
|
|
void GHistIndexMatrix::PushBatch(SparsePage const &batch,
|
|
common::Span<FeatureType const> ft,
|
|
size_t rbegin, size_t prev_sum, uint32_t nbins,
|
|
int32_t n_threads) {
|
|
// The number of threads is pegged to the batch size. If the OMP
|
|
// block is parallelized on anything other than the batch/block size,
|
|
// it should be reassigned
|
|
const size_t batch_threads =
|
|
std::max(static_cast<size_t>(1), std::min(batch.Size(), static_cast<size_t>(n_threads)));
|
|
auto page = batch.GetView();
|
|
common::MemStackAllocator<size_t, 128> partial_sums(batch_threads);
|
|
|
|
size_t block_size = batch.Size() / batch_threads;
|
|
|
|
dmlc::OMPException exc;
|
|
#pragma omp parallel num_threads(batch_threads)
|
|
{
|
|
#pragma omp for
|
|
for (omp_ulong tid = 0; tid < batch_threads; ++tid) {
|
|
exc.Run([&]() {
|
|
size_t ibegin = block_size * tid;
|
|
size_t iend = (tid == (batch_threads - 1) ? batch.Size()
|
|
: (block_size * (tid + 1)));
|
|
|
|
size_t running_sum = 0;
|
|
for (size_t ridx = ibegin; ridx < iend; ++ridx) {
|
|
running_sum += page[ridx].size();
|
|
row_ptr[rbegin + 1 + ridx] = running_sum;
|
|
}
|
|
});
|
|
}
|
|
|
|
#pragma omp single
|
|
{
|
|
exc.Run([&]() {
|
|
partial_sums[0] = prev_sum;
|
|
for (size_t i = 1; i < batch_threads; ++i) {
|
|
partial_sums[i] = partial_sums[i - 1] + row_ptr[rbegin + i * block_size];
|
|
}
|
|
});
|
|
}
|
|
|
|
#pragma omp for
|
|
for (omp_ulong tid = 0; tid < batch_threads; ++tid) {
|
|
exc.Run([&]() {
|
|
size_t ibegin = block_size * tid;
|
|
size_t iend = (tid == (batch_threads - 1) ? batch.Size()
|
|
: (block_size * (tid + 1)));
|
|
|
|
for (size_t i = ibegin; i < iend; ++i) {
|
|
row_ptr[rbegin + 1 + i] += partial_sums[tid];
|
|
}
|
|
});
|
|
}
|
|
}
|
|
exc.Rethrow();
|
|
|
|
const size_t n_index = row_ptr[rbegin + batch.Size()]; // number of entries in this page
|
|
ResizeIndex(n_index, isDense_);
|
|
|
|
CHECK_GT(cut.Values().size(), 0U);
|
|
|
|
if (isDense_) {
|
|
index.SetBinOffset(cut.Ptrs());
|
|
}
|
|
uint32_t const *offsets = index.Offset();
|
|
|
|
if (isDense_) {
|
|
// Inside the lambda functions, bin_idx is the index for cut value across all
|
|
// features. By subtracting it with starting pointer of each feature, we can reduce
|
|
// it to smaller value and compress it to smaller types.
|
|
common::BinTypeSize curent_bin_size = index.GetBinTypeSize();
|
|
if (curent_bin_size == common::kUint8BinsTypeSize) {
|
|
common::Span<uint8_t> index_data_span = {index.data<uint8_t>(), n_index};
|
|
SetIndexData(index_data_span, ft, batch_threads, batch, rbegin, nbins,
|
|
[offsets](auto bin_idx, auto fidx) {
|
|
return static_cast<uint8_t>(bin_idx - offsets[fidx]);
|
|
});
|
|
} else if (curent_bin_size == common::kUint16BinsTypeSize) {
|
|
common::Span<uint16_t> index_data_span = {index.data<uint16_t>(), n_index};
|
|
SetIndexData(index_data_span, ft, batch_threads, batch, rbegin, nbins,
|
|
[offsets](auto bin_idx, auto fidx) {
|
|
return static_cast<uint16_t>(bin_idx - offsets[fidx]);
|
|
});
|
|
} else {
|
|
CHECK_EQ(curent_bin_size, common::kUint32BinsTypeSize);
|
|
common::Span<uint32_t> index_data_span = {index.data<uint32_t>(), n_index};
|
|
SetIndexData(index_data_span, ft, batch_threads, batch, rbegin, nbins,
|
|
[offsets](auto bin_idx, auto fidx) {
|
|
return static_cast<uint32_t>(bin_idx - offsets[fidx]);
|
|
});
|
|
}
|
|
} else {
|
|
/* For sparse DMatrix we have to store index of feature for each bin
|
|
in index field to chose right offset. So offset is nullptr and index is
|
|
not reduced */
|
|
common::Span<uint32_t> index_data_span = {index.data<uint32_t>(), n_index};
|
|
SetIndexData(index_data_span, ft, batch_threads, batch, rbegin, nbins,
|
|
[](auto idx, auto) { return idx; });
|
|
}
|
|
|
|
common::ParallelFor(nbins, n_threads, [&](bst_omp_uint idx) {
|
|
for (int32_t tid = 0; tid < n_threads; ++tid) {
|
|
hit_count[idx] += hit_count_tloc_[tid * nbins + idx];
|
|
hit_count_tloc_[tid * nbins + idx] = 0; // reset for next batch
|
|
}
|
|
});
|
|
}
|
|
|
|
void GHistIndexMatrix::Init(DMatrix *p_fmat, int max_bins, double sparse_thresh, bool sorted_sketch,
|
|
int32_t n_threads, common::Span<float> hess) {
|
|
// We use sorted sketching for approx tree method since it's more efficient in
|
|
// computation time (but higher memory usage).
|
|
cut = common::SketchOnDMatrix(p_fmat, max_bins, n_threads, sorted_sketch, hess);
|
|
|
|
max_num_bins = max_bins;
|
|
const uint32_t nbins = cut.Ptrs().back();
|
|
hit_count.resize(nbins, 0);
|
|
hit_count_tloc_.resize(n_threads * nbins, 0);
|
|
|
|
this->p_fmat = p_fmat;
|
|
size_t new_size = 1;
|
|
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
|
|
new_size += batch.Size();
|
|
}
|
|
|
|
row_ptr.resize(new_size);
|
|
row_ptr[0] = 0;
|
|
|
|
size_t rbegin = 0;
|
|
size_t prev_sum = 0;
|
|
const bool isDense = p_fmat->IsDense();
|
|
this->isDense_ = isDense;
|
|
auto ft = p_fmat->Info().feature_types.ConstHostSpan();
|
|
|
|
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
|
|
this->PushBatch(batch, ft, rbegin, prev_sum, nbins, n_threads);
|
|
prev_sum = row_ptr[rbegin + batch.Size()];
|
|
rbegin += batch.Size();
|
|
}
|
|
}
|
|
|
|
void GHistIndexMatrix::Init(SparsePage const &batch, common::Span<FeatureType const> ft,
|
|
common::HistogramCuts const &cuts, int32_t max_bins_per_feat,
|
|
bool isDense, double sparse_thresh, int32_t n_threads) {
|
|
CHECK_GE(n_threads, 1);
|
|
base_rowid = batch.base_rowid;
|
|
isDense_ = isDense;
|
|
cut = cuts;
|
|
max_num_bins = max_bins_per_feat;
|
|
CHECK_EQ(row_ptr.size(), 0);
|
|
// The number of threads is pegged to the batch size. If the OMP
|
|
// block is parallelized on anything other than the batch/block size,
|
|
// it should be reassigned
|
|
row_ptr.resize(batch.Size() + 1, 0);
|
|
const uint32_t nbins = cut.Ptrs().back();
|
|
hit_count.resize(nbins, 0);
|
|
hit_count_tloc_.resize(n_threads * nbins, 0);
|
|
|
|
size_t rbegin = 0;
|
|
size_t prev_sum = 0;
|
|
|
|
this->PushBatch(batch, ft, rbegin, prev_sum, nbins, n_threads);
|
|
}
|
|
|
|
void GHistIndexMatrix::ResizeIndex(const size_t n_index, const bool isDense) {
|
|
if ((max_num_bins - 1 <= static_cast<int>(std::numeric_limits<uint8_t>::max())) && isDense) {
|
|
// compress dense index to uint8
|
|
index.SetBinTypeSize(common::kUint8BinsTypeSize);
|
|
index.Resize((sizeof(uint8_t)) * n_index);
|
|
} else if ((max_num_bins - 1 > static_cast<int>(std::numeric_limits<uint8_t>::max()) &&
|
|
max_num_bins - 1 <= static_cast<int>(std::numeric_limits<uint16_t>::max())) &&
|
|
isDense) {
|
|
// compress dense index to uint16
|
|
index.SetBinTypeSize(common::kUint16BinsTypeSize);
|
|
index.Resize((sizeof(uint16_t)) * n_index);
|
|
} else {
|
|
index.SetBinTypeSize(common::kUint32BinsTypeSize);
|
|
index.Resize((sizeof(uint32_t)) * n_index);
|
|
}
|
|
}
|
|
} // namespace xgboost
|