/*! * Copyright 2017-2022 by XGBoost Contributors * \brief Data type for fast histogram aggregation. */ #include "gradient_index.h" #include #include #include #include "../common/column_matrix.h" #include "../common/hist_util.h" #include "../common/threading_utils.h" namespace xgboost { GHistIndexMatrix::GHistIndexMatrix() : columns_{std::make_unique()} {} GHistIndexMatrix::GHistIndexMatrix(DMatrix *x, int32_t max_bin, double sparse_thresh, bool sorted_sketch, int32_t n_threads, common::Span hess) { this->Init(x, max_bin, sparse_thresh, sorted_sketch, n_threads, hess); } GHistIndexMatrix::~GHistIndexMatrix() = default; void GHistIndexMatrix::PushBatch(SparsePage const &batch, common::Span ft, size_t rbegin, size_t prev_sum, uint32_t nbins, int32_t n_threads) { // The number of threads is pegged to the batch size. If the OMP // block is parallelized on anything other than the batch/block size, // it should be reassigned const size_t batch_threads = std::max(static_cast(1), std::min(batch.Size(), static_cast(n_threads))); auto page = batch.GetView(); common::MemStackAllocator partial_sums(batch_threads); size_t block_size = batch.Size() / batch_threads; dmlc::OMPException exc; #pragma omp parallel num_threads(batch_threads) { #pragma omp for for (omp_ulong tid = 0; tid < batch_threads; ++tid) { exc.Run([&]() { size_t ibegin = block_size * tid; size_t iend = (tid == (batch_threads - 1) ? batch.Size() : (block_size * (tid + 1))); size_t running_sum = 0; for (size_t ridx = ibegin; ridx < iend; ++ridx) { running_sum += page[ridx].size(); row_ptr[rbegin + 1 + ridx] = running_sum; } }); } #pragma omp single { exc.Run([&]() { partial_sums[0] = prev_sum; for (size_t i = 1; i < batch_threads; ++i) { partial_sums[i] = partial_sums[i - 1] + row_ptr[rbegin + i * block_size]; } }); } #pragma omp for for (omp_ulong tid = 0; tid < batch_threads; ++tid) { exc.Run([&]() { size_t ibegin = block_size * tid; size_t iend = (tid == (batch_threads - 1) ? batch.Size() : (block_size * (tid + 1))); for (size_t i = ibegin; i < iend; ++i) { row_ptr[rbegin + 1 + i] += partial_sums[tid]; } }); } } exc.Rethrow(); const size_t n_index = row_ptr[rbegin + batch.Size()]; // number of entries in this page ResizeIndex(n_index, isDense_); CHECK_GT(cut.Values().size(), 0U); if (isDense_) { index.SetBinOffset(cut.Ptrs()); } uint32_t const *offsets = index.Offset(); if (isDense_) { // Inside the lambda functions, bin_idx is the index for cut value across all // features. By subtracting it with starting pointer of each feature, we can reduce // it to smaller value and compress it to smaller types. common::BinTypeSize curent_bin_size = index.GetBinTypeSize(); if (curent_bin_size == common::kUint8BinsTypeSize) { common::Span index_data_span = {index.data(), n_index}; SetIndexData(index_data_span, ft, batch_threads, batch, rbegin, nbins, [offsets](auto bin_idx, auto fidx) { return static_cast(bin_idx - offsets[fidx]); }); } else if (curent_bin_size == common::kUint16BinsTypeSize) { common::Span index_data_span = {index.data(), n_index}; SetIndexData(index_data_span, ft, batch_threads, batch, rbegin, nbins, [offsets](auto bin_idx, auto fidx) { return static_cast(bin_idx - offsets[fidx]); }); } else { CHECK_EQ(curent_bin_size, common::kUint32BinsTypeSize); common::Span index_data_span = {index.data(), n_index}; SetIndexData(index_data_span, ft, batch_threads, batch, rbegin, nbins, [offsets](auto bin_idx, auto fidx) { return static_cast(bin_idx - offsets[fidx]); }); } } else { /* For sparse DMatrix we have to store index of feature for each bin in index field to chose right offset. So offset is nullptr and index is not reduced */ common::Span index_data_span = {index.data(), n_index}; SetIndexData(index_data_span, ft, batch_threads, batch, rbegin, nbins, [](auto idx, auto) { return idx; }); } common::ParallelFor(nbins, n_threads, [&](bst_omp_uint idx) { for (int32_t tid = 0; tid < n_threads; ++tid) { hit_count[idx] += hit_count_tloc_[tid * nbins + idx]; hit_count_tloc_[tid * nbins + idx] = 0; // reset for next batch } }); } void GHistIndexMatrix::Init(DMatrix *p_fmat, int max_bins, double sparse_thresh, bool sorted_sketch, int32_t n_threads, common::Span hess) { // We use sorted sketching for approx tree method since it's more efficient in // computation time (but higher memory usage). cut = common::SketchOnDMatrix(p_fmat, max_bins, n_threads, sorted_sketch, hess); max_num_bins = max_bins; const uint32_t nbins = cut.Ptrs().back(); hit_count.resize(nbins, 0); hit_count_tloc_.resize(n_threads * nbins, 0); this->p_fmat = p_fmat; size_t new_size = 1; for (const auto &batch : p_fmat->GetBatches()) { new_size += batch.Size(); } row_ptr.resize(new_size); row_ptr[0] = 0; size_t rbegin = 0; size_t prev_sum = 0; const bool isDense = p_fmat->IsDense(); this->isDense_ = isDense; auto ft = p_fmat->Info().feature_types.ConstHostSpan(); for (const auto &batch : p_fmat->GetBatches()) { this->PushBatch(batch, ft, rbegin, prev_sum, nbins, n_threads); prev_sum = row_ptr[rbegin + batch.Size()]; rbegin += batch.Size(); } } void GHistIndexMatrix::Init(SparsePage const &batch, common::Span ft, common::HistogramCuts const &cuts, int32_t max_bins_per_feat, bool isDense, double sparse_thresh, int32_t n_threads) { CHECK_GE(n_threads, 1); base_rowid = batch.base_rowid; isDense_ = isDense; cut = cuts; max_num_bins = max_bins_per_feat; CHECK_EQ(row_ptr.size(), 0); // The number of threads is pegged to the batch size. If the OMP // block is parallelized on anything other than the batch/block size, // it should be reassigned row_ptr.resize(batch.Size() + 1, 0); const uint32_t nbins = cut.Ptrs().back(); hit_count.resize(nbins, 0); hit_count_tloc_.resize(n_threads * nbins, 0); size_t rbegin = 0; size_t prev_sum = 0; this->PushBatch(batch, ft, rbegin, prev_sum, nbins, n_threads); } void GHistIndexMatrix::ResizeIndex(const size_t n_index, const bool isDense) { if ((max_num_bins - 1 <= static_cast(std::numeric_limits::max())) && isDense) { // compress dense index to uint8 index.SetBinTypeSize(common::kUint8BinsTypeSize); index.Resize((sizeof(uint8_t)) * n_index); } else if ((max_num_bins - 1 > static_cast(std::numeric_limits::max()) && max_num_bins - 1 <= static_cast(std::numeric_limits::max())) && isDense) { // compress dense index to uint16 index.SetBinTypeSize(common::kUint16BinsTypeSize); index.Resize((sizeof(uint16_t)) * n_index); } else { index.SetBinTypeSize(common::kUint32BinsTypeSize); index.Resize((sizeof(uint32_t)) * n_index); } } } // namespace xgboost