* Extract partitioner from hist.
* Implement categorical data support by passing the gradient index directly into the partitioner.
* Organize/update document.
* Remove code for negative hessian.
This is the one last PR for removing omp global variable.
* Add context object to the `DMatrix`. This bridges `DMatrix` with https://github.com/dmlc/xgboost/issues/7308 .
* Require context to be available at the construction time of booster.
* Add `n_threads` support for R csc DMatrix constructor.
* Remove `omp_get_max_threads` in R glue code.
* Remove threading utilities that rely on omp global variable.
This PR rewrites the approx tree method to use codebase from hist for better performance and code sharing.
The rewrite has many benefits:
- Support for both `max_leaves` and `max_depth`.
- Support for `grow_policy`.
- Support for mono constraint.
- Support for feature weights.
- Support for easier bin configuration (`max_bin`).
- Support for categorical data.
- Faster performance for most of the datasets. (many times faster)
- Support for prediction cache.
- Significantly better performance for external memory.
- Unites the code base between approx and hist.
* Workaround a compiler bug in MacOS AppleClang
* [CI] Run C++ test with MacOS Catalina + AppleClang 11.0.3
* [CI] Migrate cmake_test on MacOS from Travis CI to GitHub Actions
* Install OpenMP runtime
* [CI] Use CMake to locate lz4 lib
* Implement GK sketching on GPU.
* Strong tests on quantile building.
* Handle sparse dataset by binary searching the column index.
* Hypothesis test on dask.