xgboost/src/common/threading_utils.h
Jiaming Yuan fffb1fca52
Calculate base_score based on input labels for mae. (#8107)
Fit an intercept as base score for abs loss.
2022-09-20 20:53:54 +08:00

303 lines
8.5 KiB
C++

/*!
* Copyright 2019-2022 by XGBoost Contributors
*/
#ifndef XGBOOST_COMMON_THREADING_UTILS_H_
#define XGBOOST_COMMON_THREADING_UTILS_H_
#include <dmlc/common.h>
#include <dmlc/omp.h>
#include <algorithm>
#include <cstdint> // std::int32_t
#include <limits>
#include <type_traits> // std::is_signed
#include <vector>
#include "xgboost/logging.h"
#if !defined(_OPENMP)
extern "C" {
inline int32_t omp_get_thread_limit() __GOMP_NOTHROW { return 1; } // NOLINT
}
#endif // !defined(_OPENMP)
// MSVC doesn't implement the thread limit.
#if defined(_OPENMP) && defined(_MSC_VER)
extern "C" {
inline int32_t omp_get_thread_limit() { return std::numeric_limits<int32_t>::max(); } // NOLINT
}
#endif // defined(_MSC_VER)
namespace xgboost {
namespace common {
// Represent simple range of indexes [begin, end)
// Inspired by tbb::blocked_range
class Range1d {
public:
Range1d(size_t begin, size_t end): begin_(begin), end_(end) {
CHECK_LT(begin, end);
}
size_t begin() const { // NOLINT
return begin_;
}
size_t end() const { // NOLINT
return end_;
}
private:
size_t begin_;
size_t end_;
};
// Split 2d space to balanced blocks
// Implementation of the class is inspired by tbb::blocked_range2d
// However, TBB provides only (n x m) 2d range (matrix) separated by blocks. Example:
// [ 1,2,3 ]
// [ 4,5,6 ]
// [ 7,8,9 ]
// But the class is able to work with different sizes in each 'row'. Example:
// [ 1,2 ]
// [ 3,4,5,6 ]
// [ 7,8,9]
// If grain_size is 2: It produces following blocks:
// [1,2], [3,4], [5,6], [7,8], [9]
// The class helps to process data in several tree nodes (non-balanced usually) in parallel
// Using nested parallelism (by nodes and by data in each node)
// it helps to improve CPU resources utilization
class BlockedSpace2d {
public:
// Example of space:
// [ 1,2 ]
// [ 3,4,5,6 ]
// [ 7,8,9]
// BlockedSpace2d will create following blocks (tasks) if grain_size=2:
// 1-block: first_dimension = 0, range of indexes in a 'row' = [0,2) (includes [1,2] values)
// 2-block: first_dimension = 1, range of indexes in a 'row' = [0,2) (includes [3,4] values)
// 3-block: first_dimension = 1, range of indexes in a 'row' = [2,4) (includes [5,6] values)
// 4-block: first_dimension = 2, range of indexes in a 'row' = [0,2) (includes [7,8] values)
// 5-block: first_dimension = 2, range of indexes in a 'row' = [2,3) (includes [9] values)
// Arguments:
// dim1 - size of the first dimension in the space
// getter_size_dim2 - functor to get the second dimensions for each 'row' by row-index
// grain_size - max size of produced blocks
template<typename Func>
BlockedSpace2d(size_t dim1, Func getter_size_dim2, size_t grain_size) {
for (size_t i = 0; i < dim1; ++i) {
const size_t size = getter_size_dim2(i);
const size_t n_blocks = size/grain_size + !!(size % grain_size);
for (size_t iblock = 0; iblock < n_blocks; ++iblock) {
const size_t begin = iblock * grain_size;
const size_t end = std::min(begin + grain_size, size);
AddBlock(i, begin, end);
}
}
}
// Amount of blocks(tasks) in a space
size_t Size() const {
return ranges_.size();
}
// get index of the first dimension of i-th block(task)
size_t GetFirstDimension(size_t i) const {
CHECK_LT(i, first_dimension_.size());
return first_dimension_[i];
}
// get a range of indexes for the second dimension of i-th block(task)
Range1d GetRange(size_t i) const {
CHECK_LT(i, ranges_.size());
return ranges_[i];
}
private:
void AddBlock(size_t first_dimension, size_t begin, size_t end) {
first_dimension_.push_back(first_dimension);
ranges_.emplace_back(begin, end);
}
std::vector<Range1d> ranges_;
std::vector<size_t> first_dimension_;
};
// Wrapper to implement nested parallelism with simple omp parallel for
template <typename Func>
void ParallelFor2d(const BlockedSpace2d& space, int nthreads, Func func) {
const size_t num_blocks_in_space = space.Size();
CHECK_GE(nthreads, 1);
dmlc::OMPException exc;
#pragma omp parallel num_threads(nthreads)
{
exc.Run([&]() {
size_t tid = omp_get_thread_num();
size_t chunck_size =
num_blocks_in_space / nthreads + !!(num_blocks_in_space % nthreads);
size_t begin = chunck_size * tid;
size_t end = std::min(begin + chunck_size, num_blocks_in_space);
for (auto i = begin; i < end; i++) {
func(space.GetFirstDimension(i), space.GetRange(i));
}
});
}
exc.Rethrow();
}
/**
* OpenMP schedule
*/
struct Sched {
enum {
kAuto,
kDynamic,
kStatic,
kGuided,
} sched;
size_t chunk{0};
Sched static Auto() { return Sched{kAuto}; }
Sched static Dyn(size_t n = 0) { return Sched{kDynamic, n}; }
Sched static Static(size_t n = 0) { return Sched{kStatic, n}; }
Sched static Guided() { return Sched{kGuided}; }
};
template <typename Index, typename Func>
void ParallelFor(Index size, int32_t n_threads, Sched sched, Func fn) {
#if defined(_MSC_VER)
// msvc doesn't support unsigned integer as openmp index.
using OmpInd = std::conditional_t<std::is_signed<Index>::value, Index, omp_ulong>;
#else
using OmpInd = Index;
#endif
OmpInd length = static_cast<OmpInd>(size);
CHECK_GE(n_threads, 1);
dmlc::OMPException exc;
switch (sched.sched) {
case Sched::kAuto: {
#pragma omp parallel for num_threads(n_threads)
for (OmpInd i = 0; i < length; ++i) {
exc.Run(fn, i);
}
break;
}
case Sched::kDynamic: {
if (sched.chunk == 0) {
#pragma omp parallel for num_threads(n_threads) schedule(dynamic)
for (OmpInd i = 0; i < length; ++i) {
exc.Run(fn, i);
}
} else {
#pragma omp parallel for num_threads(n_threads) schedule(dynamic, sched.chunk)
for (OmpInd i = 0; i < length; ++i) {
exc.Run(fn, i);
}
}
break;
}
case Sched::kStatic: {
if (sched.chunk == 0) {
#pragma omp parallel for num_threads(n_threads) schedule(static)
for (OmpInd i = 0; i < length; ++i) {
exc.Run(fn, i);
}
} else {
#pragma omp parallel for num_threads(n_threads) schedule(static, sched.chunk)
for (OmpInd i = 0; i < length; ++i) {
exc.Run(fn, i);
}
}
break;
}
case Sched::kGuided: {
#pragma omp parallel for num_threads(n_threads) schedule(guided)
for (OmpInd i = 0; i < length; ++i) {
exc.Run(fn, i);
}
break;
}
}
exc.Rethrow();
}
template <typename Index, typename Func>
void ParallelFor(Index size, int32_t n_threads, Func fn) {
ParallelFor(size, n_threads, Sched::Static(), fn);
}
inline int32_t OmpGetThreadLimit() {
int32_t limit = omp_get_thread_limit();
CHECK_GE(limit, 1) << "Invalid thread limit for OpenMP.";
return limit;
}
int32_t GetCfsCPUCount() noexcept;
inline int32_t OmpGetNumThreads(int32_t n_threads) {
if (n_threads <= 0) {
n_threads = std::min(omp_get_num_procs(), omp_get_max_threads());
}
n_threads = std::min(n_threads, OmpGetThreadLimit());
n_threads = std::max(n_threads, 1);
return n_threads;
}
/*!
* \brief A C-style array with in-stack allocation. As long as the array is smaller than
* MaxStackSize, it will be allocated inside the stack. Otherwise, it will be
* heap-allocated.
*/
template <typename T, std::size_t MaxStackSize>
class MemStackAllocator {
public:
explicit MemStackAllocator(size_t required_size) : required_size_(required_size) {
if (MaxStackSize >= required_size_) {
ptr_ = stack_mem_;
} else {
ptr_ = reinterpret_cast<T*>(malloc(required_size_ * sizeof(T)));
}
if (!ptr_) {
throw std::bad_alloc{};
}
}
MemStackAllocator(size_t required_size, T init) : MemStackAllocator{required_size} {
std::fill_n(ptr_, required_size_, init);
}
~MemStackAllocator() {
if (required_size_ > MaxStackSize) {
free(ptr_);
}
}
T& operator[](size_t i) { return ptr_[i]; }
T const& operator[](size_t i) const { return ptr_[i]; }
auto data() const { return ptr_; } // NOLINT
auto data() { return ptr_; } // NOLINT
std::size_t size() const { return required_size_; } // NOLINT
auto cbegin() const { return data(); } // NOLINT
auto cend() const { return data() + size(); } // NOLINT
private:
T* ptr_ = nullptr;
size_t required_size_;
T stack_mem_[MaxStackSize];
};
/**
* \brief Constant that can be used for initializing static thread local memory.
*/
std::int32_t constexpr DefaultMaxThreads() { return 128; }
} // namespace common
} // namespace xgboost
#endif // XGBOOST_COMMON_THREADING_UTILS_H_