Improve OpenMP exception handling (#6680)

This commit is contained in:
Louis Desreumaux 2021-02-25 06:56:16 +01:00 committed by GitHub
parent c375173dca
commit 9b530e5697
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
26 changed files with 610 additions and 475 deletions

View File

@ -1,6 +1,7 @@
// Copyright (c) 2014 by Contributors
#include <dmlc/logging.h>
#include <dmlc/omp.h>
#include <dmlc/common.h>
#include <xgboost/c_api.h>
#include <vector>
#include <string>
@ -92,12 +93,16 @@ SEXP XGDMatrixCreateFromMat_R(SEXP mat,
din = REAL(mat);
}
std::vector<float> data(nrow * ncol);
dmlc::OMPException exc;
#pragma omp parallel for schedule(static)
for (omp_ulong i = 0; i < nrow; ++i) {
for (size_t j = 0; j < ncol; ++j) {
data[i * ncol +j] = is_int ? static_cast<float>(iin[i + nrow * j]) : din[i + nrow * j];
}
exc.Run([&]() {
for (size_t j = 0; j < ncol; ++j) {
data[i * ncol +j] = is_int ? static_cast<float>(iin[i + nrow * j]) : din[i + nrow * j];
}
});
}
exc.Rethrow();
DMatrixHandle handle;
CHECK_CALL(XGDMatrixCreateFromMat(BeginPtr(data), nrow, ncol, asReal(missing), &handle));
ret = PROTECT(R_MakeExternalPtr(handle, R_NilValue, R_NilValue));
@ -126,11 +131,15 @@ SEXP XGDMatrixCreateFromCSC_R(SEXP indptr,
for (size_t i = 0; i < nindptr; ++i) {
col_ptr_[i] = static_cast<size_t>(p_indptr[i]);
}
dmlc::OMPException exc;
#pragma omp parallel for schedule(static)
for (int64_t i = 0; i < static_cast<int64_t>(ndata); ++i) {
indices_[i] = static_cast<unsigned>(p_indices[i]);
data_[i] = static_cast<float>(p_data[i]);
exc.Run([&]() {
indices_[i] = static_cast<unsigned>(p_indices[i]);
data_[i] = static_cast<float>(p_data[i]);
});
}
exc.Rethrow();
DMatrixHandle handle;
CHECK_CALL(XGDMatrixCreateFromCSCEx(BeginPtr(col_ptr_), BeginPtr(indices_),
BeginPtr(data_), nindptr, ndata,
@ -175,12 +184,16 @@ SEXP XGDMatrixSetInfo_R(SEXP handle, SEXP field, SEXP array) {
R_API_BEGIN();
int len = length(array);
const char *name = CHAR(asChar(field));
dmlc::OMPException exc;
if (!strcmp("group", name)) {
std::vector<unsigned> vec(len);
#pragma omp parallel for schedule(static)
for (int i = 0; i < len; ++i) {
vec[i] = static_cast<unsigned>(INTEGER(array)[i]);
exc.Run([&]() {
vec[i] = static_cast<unsigned>(INTEGER(array)[i]);
});
}
exc.Rethrow();
CHECK_CALL(XGDMatrixSetUIntInfo(R_ExternalPtrAddr(handle),
CHAR(asChar(field)),
BeginPtr(vec), len));
@ -188,8 +201,11 @@ SEXP XGDMatrixSetInfo_R(SEXP handle, SEXP field, SEXP array) {
std::vector<float> vec(len);
#pragma omp parallel for schedule(static)
for (int i = 0; i < len; ++i) {
vec[i] = REAL(array)[i];
exc.Run([&]() {
vec[i] = REAL(array)[i];
});
}
exc.Rethrow();
CHECK_CALL(XGDMatrixSetFloatInfo(R_ExternalPtrAddr(handle),
CHAR(asChar(field)),
BeginPtr(vec), len));
@ -280,11 +296,15 @@ SEXP XGBoosterBoostOneIter_R(SEXP handle, SEXP dtrain, SEXP grad, SEXP hess) {
<< "gradient and hess must have same length";
int len = length(grad);
std::vector<float> tgrad(len), thess(len);
dmlc::OMPException exc;
#pragma omp parallel for schedule(static)
for (int j = 0; j < len; ++j) {
tgrad[j] = REAL(grad)[j];
thess[j] = REAL(hess)[j];
exc.Run([&]() {
tgrad[j] = REAL(grad)[j];
thess[j] = REAL(hess)[j];
});
}
exc.Rethrow();
CHECK_CALL(XGBoosterBoostOneIter(R_ExternalPtrAddr(handle),
R_ExternalPtrAddr(dtrain),
BeginPtr(tgrad), BeginPtr(thess),

View File

@ -290,15 +290,19 @@ class SparsePage {
void SortRows() {
auto ncol = static_cast<bst_omp_uint>(this->Size());
#pragma omp parallel for default(none) shared(ncol) schedule(dynamic, 1)
dmlc::OMPException exc;
#pragma omp parallel for schedule(dynamic, 1)
for (bst_omp_uint i = 0; i < ncol; ++i) {
if (this->offset.HostVector()[i] < this->offset.HostVector()[i + 1]) {
std::sort(
this->data.HostVector().begin() + this->offset.HostVector()[i],
this->data.HostVector().begin() + this->offset.HostVector()[i + 1],
Entry::CmpValue);
}
exc.Run([&]() {
if (this->offset.HostVector()[i] < this->offset.HostVector()[i + 1]) {
std::sort(
this->data.HostVector().begin() + this->offset.HostVector()[i],
this->data.HostVector().begin() + this->offset.HostVector()[i + 1],
Entry::CmpValue);
}
});
}
exc.Rethrow();
}
/**

View File

@ -250,14 +250,18 @@ class SparsePageLZ4Format : public SparsePageFormat<SparsePage> {
int nindex = index_.num_chunk();
int nvalue = value_.num_chunk();
int ntotal = nindex + nvalue;
#pragma omp parallel for schedule(dynamic, 1) num_threads(nthread_write_)
dmlc::OMPException exc;
#pragma omp parallel for schedule(dynamic, 1) num_threads(nthread_write_)
for (int i = 0; i < ntotal; ++i) {
if (i < nindex) {
index_.Compress(i, use_lz4_hc_);
} else {
value_.Compress(i - nindex, use_lz4_hc_);
}
exc.Run([&]() {
if (i < nindex) {
index_.Compress(i, use_lz4_hc_);
} else {
value_.Compress(i - nindex, use_lz4_hc_);
}
});
}
exc.Rethrow();
index_.Write(fo);
value_.Write(fo);
// statistics
@ -276,14 +280,18 @@ class SparsePageLZ4Format : public SparsePageFormat<SparsePage> {
int nindex = index_.num_chunk();
int nvalue = value_.num_chunk();
int ntotal = nindex + nvalue;
dmlc::OMPException exc;
#pragma omp parallel for schedule(dynamic, 1) num_threads(nthread_)
for (int i = 0; i < ntotal; ++i) {
if (i < nindex) {
index_.Decompress(i);
} else {
value_.Decompress(i - nindex);
}
exc.Run([&]() {
if (i < nindex) {
index_.Decompress(i);
} else {
value_.Decompress(i - nindex);
}
});
}
exc.Rethrow();
}
private:

View File

@ -230,8 +230,7 @@ class ColumnMatrix {
/* missing values make sense only for column with type kDenseColumn,
and if no missing values were observed it could be handled much faster. */
if (noMissingValues) {
#pragma omp parallel for num_threads(omp_get_max_threads())
for (omp_ulong rid = 0; rid < nrow; ++rid) {
ParallelFor(omp_ulong(nrow), [&](omp_ulong rid) {
const size_t ibegin = rid*nfeature;
const size_t iend = (rid+1)*nfeature;
size_t j = 0;
@ -239,7 +238,7 @@ class ColumnMatrix {
const size_t idx = feature_offsets_[j];
local_index[idx + rid] = index[i];
}
}
});
} else {
/* to handle rows in all batches, sum of all batch sizes equal to gmat.row_ptr.size() - 1 */
size_t rbegin = 0;

View File

@ -84,38 +84,46 @@ void GHistIndexMatrix::Init(DMatrix* p_fmat, int max_bins) {
size_t block_size = batch.Size() / batch_threads;
dmlc::OMPException exc;
#pragma omp parallel num_threads(batch_threads)
{
#pragma omp for
for (omp_ulong tid = 0; tid < batch_threads; ++tid) {
size_t ibegin = block_size * tid;
size_t iend = (tid == (batch_threads-1) ? batch.Size() : (block_size * (tid+1)));
exc.Run([&]() {
size_t ibegin = block_size * tid;
size_t iend = (tid == (batch_threads-1) ? batch.Size() : (block_size * (tid+1)));
size_t sum = 0;
for (size_t i = ibegin; i < iend; ++i) {
sum += page[i].size();
row_ptr[rbegin + 1 + i] = sum;
}
size_t sum = 0;
for (size_t i = ibegin; i < iend; ++i) {
sum += page[i].size();
row_ptr[rbegin + 1 + i] = sum;
}
});
}
#pragma omp single
{
p_part[0] = prev_sum;
for (size_t i = 1; i < batch_threads; ++i) {
p_part[i] = p_part[i - 1] + row_ptr[rbegin + i*block_size];
}
exc.Run([&]() {
p_part[0] = prev_sum;
for (size_t i = 1; i < batch_threads; ++i) {
p_part[i] = p_part[i - 1] + row_ptr[rbegin + i*block_size];
}
});
}
#pragma omp for
for (omp_ulong tid = 0; tid < batch_threads; ++tid) {
size_t ibegin = block_size * tid;
size_t iend = (tid == (batch_threads-1) ? batch.Size() : (block_size * (tid+1)));
exc.Run([&]() {
size_t ibegin = block_size * tid;
size_t iend = (tid == (batch_threads-1) ? batch.Size() : (block_size * (tid+1)));
for (size_t i = ibegin; i < iend; ++i) {
row_ptr[rbegin + 1 + i] += p_part[tid];
}
for (size_t i = ibegin; i < iend; ++i) {
row_ptr[rbegin + 1 + i] += p_part[tid];
}
});
}
}
exc.Rethrow();
const size_t n_offsets = cut.Ptrs().size() - 1;
const size_t n_index = row_ptr[rbegin + batch.Size()];
@ -167,13 +175,12 @@ void GHistIndexMatrix::Init(DMatrix* p_fmat, int max_bins) {
[](auto idx, auto) { return idx; });
}
#pragma omp parallel for num_threads(nthread) schedule(static)
for (bst_omp_uint idx = 0; idx < bst_omp_uint(nbins); ++idx) {
ParallelFor(bst_omp_uint(nbins), nthread, [&](bst_omp_uint idx) {
for (int32_t tid = 0; tid < nthread; ++tid) {
hit_count[idx] += hit_count_tloc_[tid * nbins + idx];
hit_count_tloc_[tid * nbins + idx] = 0; // reset for next batch
}
}
});
prev_sum = row_ptr[rbegin + batch.Size()];
rbegin += batch.Size();
@ -701,7 +708,7 @@ void GHistBuilder<GradientSumT>::BuildBlockHist(const std::vector<GradientPair>&
const RowSetCollection::Elem row_indices,
const GHistIndexBlockMatrix& gmatb,
GHistRowT hist) {
constexpr int kUnroll = 8; // loop unrolling factor
static constexpr int kUnroll = 8; // loop unrolling factor
const size_t nblock = gmatb.GetNumBlock();
const size_t nrows = row_indices.end - row_indices.begin;
const size_t rest = nrows % kUnroll;
@ -710,40 +717,44 @@ void GHistBuilder<GradientSumT>::BuildBlockHist(const std::vector<GradientPair>&
#endif // defined(_OPENMP)
xgboost::detail::GradientPairInternal<GradientSumT>* p_hist = hist.data();
dmlc::OMPException exc;
#pragma omp parallel for num_threads(nthread) schedule(guided)
for (bst_omp_uint bid = 0; bid < nblock; ++bid) {
auto gmat = gmatb[bid];
exc.Run([&]() {
auto gmat = gmatb[bid];
for (size_t i = 0; i < nrows - rest; i += kUnroll) {
size_t rid[kUnroll];
size_t ibegin[kUnroll];
size_t iend[kUnroll];
GradientPair stat[kUnroll];
for (size_t i = 0; i < nrows - rest; i += kUnroll) {
size_t rid[kUnroll];
size_t ibegin[kUnroll];
size_t iend[kUnroll];
GradientPair stat[kUnroll];
for (int k = 0; k < kUnroll; ++k) {
rid[k] = row_indices.begin[i + k];
ibegin[k] = gmat.row_ptr[rid[k]];
iend[k] = gmat.row_ptr[rid[k] + 1];
stat[k] = gpair[rid[k]];
}
for (int k = 0; k < kUnroll; ++k) {
for (size_t j = ibegin[k]; j < iend[k]; ++j) {
const uint32_t bin = gmat.index[j];
p_hist[bin].Add(stat[k].GetGrad(), stat[k].GetHess());
for (int k = 0; k < kUnroll; ++k) {
rid[k] = row_indices.begin[i + k];
ibegin[k] = gmat.row_ptr[rid[k]];
iend[k] = gmat.row_ptr[rid[k] + 1];
stat[k] = gpair[rid[k]];
}
for (int k = 0; k < kUnroll; ++k) {
for (size_t j = ibegin[k]; j < iend[k]; ++j) {
const uint32_t bin = gmat.index[j];
p_hist[bin].Add(stat[k].GetGrad(), stat[k].GetHess());
}
}
}
}
for (size_t i = nrows - rest; i < nrows; ++i) {
const size_t rid = row_indices.begin[i];
const size_t ibegin = gmat.row_ptr[rid];
const size_t iend = gmat.row_ptr[rid + 1];
const GradientPair stat = gpair[rid];
for (size_t j = ibegin; j < iend; ++j) {
const uint32_t bin = gmat.index[j];
p_hist[bin].Add(stat.GetGrad(), stat.GetHess());
for (size_t i = nrows - rest; i < nrows; ++i) {
const size_t rid = row_indices.begin[i];
const size_t ibegin = gmat.row_ptr[rid];
const size_t iend = gmat.row_ptr[rid + 1];
const GradientPair stat = gpair[rid];
for (size_t j = ibegin; j < iend; ++j) {
const uint32_t bin = gmat.index[j];
p_hist[bin].Add(stat.GetGrad(), stat.GetHess());
}
}
}
});
}
exc.Rethrow();
}
template
void GHistBuilder<float>::BuildBlockHist(const std::vector<GradientPair>& gpair,
@ -768,12 +779,11 @@ void GHistBuilder<GradientSumT>::SubtractionTrick(GHistRowT self,
const size_t block_size = 1024; // aproximatly 1024 values per block
size_t n_blocks = size/block_size + !!(size%block_size);
#pragma omp parallel for
for (omp_ulong iblock = 0; iblock < n_blocks; ++iblock) {
ParallelFor(omp_ulong(n_blocks), [&](omp_ulong iblock) {
const size_t ibegin = iblock*block_size;
const size_t iend = (((iblock+1)*block_size > size) ? size : ibegin + block_size);
SubtractionHist(self, parent, sibling, ibegin, iend);
}
});
}
template
void GHistBuilder<float>::SubtractionTrick(GHistRow<float> self,

View File

@ -257,8 +257,7 @@ struct GHistIndexMatrix {
const size_t batch_size = batch.Size();
CHECK_LT(batch_size, offset_vec.size());
BinIdxType* index_data = index_data_span.data();
#pragma omp parallel for num_threads(batch_threads) schedule(static)
for (omp_ulong i = 0; i < batch_size; ++i) {
ParallelFor(omp_ulong(batch_size), batch_threads, [&](omp_ulong i) {
const int tid = omp_get_thread_num();
size_t ibegin = row_ptr[rbegin + i];
size_t iend = row_ptr[rbegin + i + 1];
@ -270,7 +269,7 @@ struct GHistIndexMatrix {
index_data[ibegin + j] = get_offset(idx, j);
++hit_count_tloc_[tid * nbins + idx];
}
}
});
}
void ResizeIndex(const size_t n_index,

View File

@ -35,7 +35,7 @@ HostSketchContainer::CalcColumnSize(SparsePage const &batch,
column.resize(n_columns, 0);
}
ParallelFor(page.Size(), nthreads, [&](size_t i) {
ParallelFor(omp_ulong(page.Size()), nthreads, [&](omp_ulong i) {
auto &local_column_sizes = column_sizes.at(omp_get_thread_num());
auto row = page[i];
auto const *p_row = row.data();
@ -44,7 +44,7 @@ HostSketchContainer::CalcColumnSize(SparsePage const &batch,
}
});
std::vector<bst_row_t> entries_per_columns(n_columns, 0);
ParallelFor(n_columns, nthreads, [&](size_t i) {
ParallelFor(bst_omp_uint(n_columns), nthreads, [&](bst_omp_uint i) {
for (auto const &thread : column_sizes) {
entries_per_columns[i] += thread[i];
}
@ -99,15 +99,15 @@ void HostSketchContainer::PushRowPage(SparsePage const &page,
std::vector<bst_uint> const &group_ptr = info.group_ptr_;
// Use group index for weights?
auto batch = page.GetView();
dmlc::OMPException exec;
// Parallel over columns. Each thread owns a set of consecutive columns.
auto const ncol = static_cast<uint32_t>(info.num_col_);
auto const is_dense = info.num_nonzero_ == info.num_col_ * info.num_row_;
auto thread_columns_ptr = LoadBalance(page, info.num_col_, nthread);
dmlc::OMPException exc;
#pragma omp parallel num_threads(nthread)
{
exec.Run([&]() {
exc.Run([&]() {
auto tid = static_cast<uint32_t>(omp_get_thread_num());
auto const begin = thread_columns_ptr[tid];
auto const end = thread_columns_ptr[tid + 1];
@ -140,7 +140,7 @@ void HostSketchContainer::PushRowPage(SparsePage const &page,
}
});
}
exec.Rethrow();
exc.Rethrow();
monitor_.Stop(__func__);
}
@ -242,7 +242,7 @@ size_t nbytes = 0;
&global_sketches);
std::vector<WQSketch::SummaryContainer> final_sketches(n_columns);
ParallelFor(n_columns, omp_get_max_threads(), [&](size_t fidx) {
ParallelFor(omp_ulong(n_columns), [&](omp_ulong fidx) {
int32_t intermediate_num_cuts = num_cuts[fidx];
auto nbytes =
WQSketch::SummaryContainer::CalcMemCost(intermediate_num_cuts);

View File

@ -115,11 +115,10 @@ void ParallelFor2d(const BlockedSpace2d& space, int nthreads, Func func) {
nthreads = std::min(nthreads, omp_get_max_threads());
nthreads = std::max(nthreads, 1);
dmlc::OMPException omp_exc;
dmlc::OMPException exc;
#pragma omp parallel num_threads(nthreads)
{
omp_exc.Run(
[](size_t num_blocks_in_space, const BlockedSpace2d& space, int nthreads, Func func) {
exc.Run([&]() {
size_t tid = omp_get_thread_num();
size_t chunck_size =
num_blocks_in_space / nthreads + !!(num_blocks_in_space % nthreads);
@ -129,19 +128,24 @@ void ParallelFor2d(const BlockedSpace2d& space, int nthreads, Func func) {
for (auto i = begin; i < end; i++) {
func(space.GetFirstDimension(i), space.GetRange(i));
}
}, num_blocks_in_space, space, nthreads, func);
});
}
omp_exc.Rethrow();
exc.Rethrow();
}
template <typename Func>
void ParallelFor(size_t size, size_t nthreads, Func fn) {
dmlc::OMPException omp_exc;
#pragma omp parallel for num_threads(nthreads)
for (omp_ulong i = 0; i < size; ++i) {
omp_exc.Run(fn, i);
template <typename Index, typename Func>
void ParallelFor(Index size, size_t nthreads, Func fn) {
dmlc::OMPException exc;
#pragma omp parallel for num_threads(nthreads) schedule(static)
for (Index i = 0; i < size; ++i) {
exc.Run(fn, i);
}
omp_exc.Rethrow();
exc.Rethrow();
}
template <typename Index, typename Func>
void ParallelFor(Index size, Func fn) {
ParallelFor(size, omp_get_max_threads(), fn);
}
/* \brief Configure parallel threads.

View File

@ -16,6 +16,7 @@
#include "xgboost/span.h"
#include "common.h"
#include "threading_utils.h"
#if defined (__CUDACC__)
#include "device_helpers.cuh"
@ -168,13 +169,10 @@ class Transform {
template <typename... HDV>
void LaunchCPU(Functor func, HDV*... vectors) const {
omp_ulong end = static_cast<omp_ulong>(*(range_.end()));
dmlc::OMPException omp_exc;
SyncHost(vectors...);
#pragma omp parallel for schedule(static)
for (omp_ulong idx = 0; idx < end; ++idx) {
omp_exc.Run(func, idx, UnpackHDV(vectors)...);
}
omp_exc.Rethrow();
ParallelFor(end, [&](omp_ulong idx) {
func(idx, UnpackHDV(vectors)...);
});
}
private:

View File

@ -829,18 +829,16 @@ SparsePage SparsePage::GetTranspose(int num_columns) const {
const int nthread = omp_get_max_threads();
builder.InitBudget(num_columns, nthread);
long batch_size = static_cast<long>(this->Size()); // NOLINT(*)
auto page = this->GetView();
#pragma omp parallel for default(none) shared(batch_size, builder, page) schedule(static)
for (long i = 0; i < batch_size; ++i) { // NOLINT(*)
auto page = this->GetView();
common::ParallelFor(batch_size, [&](long i) { // NOLINT(*)
int tid = omp_get_thread_num();
auto inst = page[i];
for (const auto& entry : inst) {
builder.AddBudget(entry.index, tid);
}
}
});
builder.InitStorage();
#pragma omp parallel for default(none) shared(batch_size, builder, page) schedule(static)
for (long i = 0; i < batch_size; ++i) { // NOLINT(*)
common::ParallelFor(batch_size, [&](long i) { // NOLINT(*)
int tid = omp_get_thread_num();
auto inst = page[i];
for (const auto& entry : inst) {
@ -849,7 +847,7 @@ SparsePage SparsePage::GetTranspose(int num_columns) const {
Entry(static_cast<bst_uint>(this->base_rowid + i), entry.fvalue),
tid);
}
}
});
return transpose;
}
void SparsePage::Push(const SparsePage &batch) {
@ -900,11 +898,11 @@ uint64_t SparsePage::Push(const AdapterBatchT& batch, float missing, int nthread
return max_columns;
}
std::vector<std::vector<uint64_t>> max_columns_vector(nthread);
dmlc::OMPException exec;
dmlc::OMPException exc;
// First-pass over the batch counting valid elements
#pragma omp parallel num_threads(nthread)
{
exec.Run([&]() {
exc.Run([&]() {
int tid = omp_get_thread_num();
size_t begin = tid*thread_size;
size_t end = tid != (nthread-1) ? (tid+1)*thread_size : batch_size;
@ -929,7 +927,7 @@ uint64_t SparsePage::Push(const AdapterBatchT& batch, float missing, int nthread
}
});
}
exec.Rethrow();
exc.Rethrow();
for (const auto & max : max_columns_vector) {
max_columns = std::max(max_columns, max[0]);
}
@ -940,7 +938,7 @@ uint64_t SparsePage::Push(const AdapterBatchT& batch, float missing, int nthread
#pragma omp parallel num_threads(nthread)
{
exec.Run([&]() {
exc.Run([&]() {
int tid = omp_get_thread_num();
size_t begin = tid*thread_size;
size_t end = tid != (nthread-1) ? (tid+1)*thread_size : batch_size;
@ -956,7 +954,7 @@ uint64_t SparsePage::Push(const AdapterBatchT& batch, float missing, int nthread
}
});
}
exec.Rethrow();
exc.Rethrow();
omp_set_num_threads(nthread_original);
return max_columns;

View File

@ -23,6 +23,7 @@
#include "gblinear_model.h"
#include "../common/timer.h"
#include "../common/common.h"
#include "../common/threading_utils.h"
namespace xgboost {
namespace gbm {
@ -178,8 +179,7 @@ class GBLinear : public GradientBooster {
// parallel over local batch
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
auto page = batch.GetView();
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
common::ParallelFor(nsize, [&](bst_omp_uint i) {
auto inst = page[i];
auto row_idx = static_cast<size_t>(batch.base_rowid + i);
// loop over output groups
@ -195,7 +195,7 @@ class GBLinear : public GradientBooster {
((base_margin.size() != 0) ? base_margin[row_idx * ngroup + gid] :
learner_model_param_->base_score);
}
}
});
}
}
@ -246,8 +246,7 @@ class GBLinear : public GradientBooster {
if (base_margin.size() != 0) {
CHECK_EQ(base_margin.size(), nsize * ngroup);
}
#pragma omp parallel for schedule(static)
for (omp_ulong i = 0; i < nsize; ++i) {
common::ParallelFor(nsize, [&](omp_ulong i) {
const size_t ridx = page.base_rowid + i;
// loop over output groups
for (int gid = 0; gid < ngroup; ++gid) {
@ -256,7 +255,7 @@ class GBLinear : public GradientBooster {
base_margin[ridx * ngroup + gid] : learner_model_param_->base_score;
this->Pred(batch[i], &preds[ridx * ngroup], gid, margin);
}
}
});
}
monitor_.Stop("PredictBatchInternal");
}

View File

@ -27,6 +27,7 @@
#include "../common/common.h"
#include "../common/random.h"
#include "../common/timer.h"
#include "../common/threading_utils.h"
namespace xgboost {
namespace gbm {
@ -219,10 +220,9 @@ void GBTree::DoBoost(DMatrix* p_fmat,
bool update_predict = true;
for (int gid = 0; gid < ngroup; ++gid) {
std::vector<GradientPair>& tmp_h = tmp.HostVector();
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
common::ParallelFor(nsize, [&](bst_omp_uint i) {
tmp_h[i] = gpair_h[i * ngroup + gid];
}
});
std::vector<std::unique_ptr<RegTree> > ret;
BoostNewTrees(&tmp, p_fmat, gid, &ret);
const size_t num_new_trees = ret.size();

View File

@ -14,6 +14,7 @@
#include "./param.h"
#include "../gbm/gblinear_model.h"
#include "../common/random.h"
#include "../common/threading_utils.h"
namespace xgboost {
namespace linear {
@ -115,14 +116,18 @@ inline std::pair<double, double> GetGradientParallel(int group_idx, int num_grou
auto page = batch.GetView();
auto col = page[fidx];
const auto ndata = static_cast<bst_omp_uint>(col.size());
dmlc::OMPException exc;
#pragma omp parallel for schedule(static) reduction(+ : sum_grad, sum_hess)
for (bst_omp_uint j = 0; j < ndata; ++j) {
const bst_float v = col[j].fvalue;
auto &p = gpair[col[j].index * num_group + group_idx];
if (p.GetHess() < 0.0f) continue;
sum_grad += p.GetGrad() * v;
sum_hess += p.GetHess() * v * v;
exc.Run([&]() {
const bst_float v = col[j].fvalue;
auto &p = gpair[col[j].index * num_group + group_idx];
if (p.GetHess() < 0.0f) return;
sum_grad += p.GetGrad() * v;
sum_hess += p.GetHess() * v * v;
});
}
exc.Rethrow();
}
return std::make_pair(sum_grad, sum_hess);
}
@ -142,14 +147,18 @@ inline std::pair<double, double> GetBiasGradientParallel(int group_idx, int num_
DMatrix *p_fmat) {
double sum_grad = 0.0, sum_hess = 0.0;
const auto ndata = static_cast<bst_omp_uint>(p_fmat->Info().num_row_);
dmlc::OMPException exc;
#pragma omp parallel for schedule(static) reduction(+ : sum_grad, sum_hess)
for (bst_omp_uint i = 0; i < ndata; ++i) {
auto &p = gpair[i * num_group + group_idx];
if (p.GetHess() >= 0.0f) {
sum_grad += p.GetGrad();
sum_hess += p.GetHess();
}
exc.Run([&]() {
auto &p = gpair[i * num_group + group_idx];
if (p.GetHess() >= 0.0f) {
sum_grad += p.GetGrad();
sum_hess += p.GetHess();
}
});
}
exc.Rethrow();
return std::make_pair(sum_grad, sum_hess);
}
@ -172,12 +181,16 @@ inline void UpdateResidualParallel(int fidx, int group_idx, int num_group,
auto col = page[fidx];
// update grad value
const auto num_row = static_cast<bst_omp_uint>(col.size());
dmlc::OMPException exc;
#pragma omp parallel for schedule(static)
for (bst_omp_uint j = 0; j < num_row; ++j) {
GradientPair &p = (*in_gpair)[col[j].index * num_group + group_idx];
if (p.GetHess() < 0.0f) continue;
p += GradientPair(p.GetHess() * col[j].fvalue * dw, 0);
exc.Run([&]() {
GradientPair &p = (*in_gpair)[col[j].index * num_group + group_idx];
if (p.GetHess() < 0.0f) return;
p += GradientPair(p.GetHess() * col[j].fvalue * dw, 0);
});
}
exc.Rethrow();
}
}
@ -195,12 +208,16 @@ inline void UpdateBiasResidualParallel(int group_idx, int num_group, float dbias
DMatrix *p_fmat) {
if (dbias == 0.0f) return;
const auto ndata = static_cast<bst_omp_uint>(p_fmat->Info().num_row_);
dmlc::OMPException exc;
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < ndata; ++i) {
GradientPair &g = (*in_gpair)[i * num_group + group_idx];
if (g.GetHess() < 0.0f) continue;
g += GradientPair(g.GetHess() * dbias, 0);
exc.Run([&]() {
GradientPair &g = (*in_gpair)[i * num_group + group_idx];
if (g.GetHess() < 0.0f) return;
g += GradientPair(g.GetHess() * dbias, 0);
});
}
exc.Rethrow();
}
/**
@ -336,10 +353,9 @@ class GreedyFeatureSelector : public FeatureSelector {
const bst_omp_uint nfeat = model.learner_model_param->num_feature;
// Calculate univariate gradient sums
std::fill(gpair_sums_.begin(), gpair_sums_.end(), std::make_pair(0., 0.));
for (const auto &batch : p_fmat->GetBatches<CSCPage>()) {
auto page = batch.GetView();
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nfeat; ++i) {
for (const auto &batch : p_fmat->GetBatches<CSCPage>()) {
auto page = batch.GetView();
common::ParallelFor(nfeat, [&](bst_omp_uint i) {
const auto col = page[i];
const bst_uint ndata = col.size();
auto &sums = gpair_sums_[group_idx * nfeat + i];
@ -350,7 +366,7 @@ class GreedyFeatureSelector : public FeatureSelector {
sums.first += p.GetGrad() * v;
sums.second += p.GetHess() * v * v;
}
}
});
}
// Find a feature with the largest magnitude of weight change
int best_fidx = 0;
@ -405,8 +421,7 @@ class ThriftyFeatureSelector : public FeatureSelector {
for (const auto &batch : p_fmat->GetBatches<CSCPage>()) {
auto page = batch.GetView();
// column-parallel is usually fastaer than row-parallel
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nfeat; ++i) {
common::ParallelFor(nfeat, [&](bst_omp_uint i) {
const auto col = page[i];
const bst_uint ndata = col.size();
for (bst_uint gid = 0u; gid < ngroup; ++gid) {
@ -419,7 +434,7 @@ class ThriftyFeatureSelector : public FeatureSelector {
sums.second += p.GetHess() * v * v;
}
}
}
});
}
// rank by descending weight magnitude within the groups
std::fill(deltaw_.begin(), deltaw_.end(), 0.f);

View File

@ -54,38 +54,42 @@ class ShotgunUpdater : public LinearUpdater {
for (const auto &batch : p_fmat->GetBatches<CSCPage>()) {
auto page = batch.GetView();
const auto nfeat = static_cast<bst_omp_uint>(batch.Size());
dmlc::OMPException exc;
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nfeat; ++i) {
int ii = selector_->NextFeature
(i, *model, 0, in_gpair->ConstHostVector(), p_fmat, param_.reg_alpha_denorm,
param_.reg_lambda_denorm);
if (ii < 0) continue;
const bst_uint fid = ii;
auto col = page[ii];
for (int gid = 0; gid < ngroup; ++gid) {
double sum_grad = 0.0, sum_hess = 0.0;
for (auto& c : col) {
const GradientPair &p = gpair[c.index * ngroup + gid];
if (p.GetHess() < 0.0f) continue;
const bst_float v = c.fvalue;
sum_grad += p.GetGrad() * v;
sum_hess += p.GetHess() * v * v;
exc.Run([&]() {
int ii = selector_->NextFeature
(i, *model, 0, in_gpair->ConstHostVector(), p_fmat, param_.reg_alpha_denorm,
param_.reg_lambda_denorm);
if (ii < 0) return;
const bst_uint fid = ii;
auto col = page[ii];
for (int gid = 0; gid < ngroup; ++gid) {
double sum_grad = 0.0, sum_hess = 0.0;
for (auto& c : col) {
const GradientPair &p = gpair[c.index * ngroup + gid];
if (p.GetHess() < 0.0f) continue;
const bst_float v = c.fvalue;
sum_grad += p.GetGrad() * v;
sum_hess += p.GetHess() * v * v;
}
bst_float &w = (*model)[fid][gid];
auto dw = static_cast<bst_float>(
param_.learning_rate *
CoordinateDelta(sum_grad, sum_hess, w, param_.reg_alpha_denorm,
param_.reg_lambda_denorm));
if (dw == 0.f) continue;
w += dw;
// update grad values
for (auto& c : col) {
GradientPair &p = gpair[c.index * ngroup + gid];
if (p.GetHess() < 0.0f) continue;
p += GradientPair(p.GetHess() * c.fvalue * dw, 0);
}
}
bst_float &w = (*model)[fid][gid];
auto dw = static_cast<bst_float>(
param_.learning_rate *
CoordinateDelta(sum_grad, sum_hess, w, param_.reg_alpha_denorm,
param_.reg_lambda_denorm));
if (dw == 0.f) continue;
w += dw;
// update grad values
for (auto& c : col) {
GradientPair &p = gpair[c.index * ngroup + gid];
if (p.GetHess() < 0.0f) continue;
p += GradientPair(p.GetHess() * c.fvalue * dw, 0);
}
}
});
}
exc.Rethrow();
}
}

View File

@ -47,12 +47,16 @@ class ElementWiseMetricsReduction {
bst_float residue_sum = 0;
bst_float weights_sum = 0;
dmlc::OMPException exc;
#pragma omp parallel for reduction(+: residue_sum, weights_sum) schedule(static)
for (omp_ulong i = 0; i < ndata; ++i) {
const bst_float wt = h_weights.size() > 0 ? h_weights[i] : 1.0f;
residue_sum += policy_.EvalRow(h_labels[i], h_preds[i]) * wt;
weights_sum += wt;
exc.Run([&]() {
const bst_float wt = h_weights.size() > 0 ? h_weights[i] : 1.0f;
residue_sum += policy_.EvalRow(h_labels[i], h_preds[i]) * wt;
weights_sum += wt;
});
}
exc.Rethrow();
PackedReduceResult res { residue_sum, weights_sum };
return res;
}

View File

@ -53,18 +53,23 @@ class MultiClassMetricsReduction {
int label_error = 0;
bool const is_null_weight = weights.Size() == 0;
dmlc::OMPException exc;
#pragma omp parallel for reduction(+: residue_sum, weights_sum) schedule(static)
for (omp_ulong idx = 0; idx < ndata; ++idx) {
bst_float weight = is_null_weight ? 1.0f : h_weights[idx];
auto label = static_cast<int>(h_labels[idx]);
if (label >= 0 && label < static_cast<int>(n_class)) {
residue_sum += EvalRowPolicy::EvalRow(
label, h_preds.data() + idx * n_class, n_class) * weight;
weights_sum += weight;
} else {
label_error = label;
}
exc.Run([&]() {
bst_float weight = is_null_weight ? 1.0f : h_weights[idx];
auto label = static_cast<int>(h_labels[idx]);
if (label >= 0 && label < static_cast<int>(n_class)) {
residue_sum += EvalRowPolicy::EvalRow(
label, h_preds.data() + idx * n_class, n_class) * weight;
weights_sum += weight;
} else {
label_error = label;
}
});
}
exc.Rethrow();
CheckLabelError(label_error, n_class);
PackedReduceResult res { residue_sum, weights_sum };

View File

@ -29,6 +29,7 @@
#include "xgboost/host_device_vector.h"
#include "../common/math.h"
#include "../common/threading_utils.h"
#include "metric_common.h"
namespace {
@ -111,10 +112,9 @@ struct EvalAMS : public Metric {
PredIndPairContainer rec(ndata);
const auto &h_preds = preds.ConstHostVector();
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < ndata; ++i) {
common::ParallelFor(ndata, [&](bst_omp_uint i) {
rec[i] = std::make_pair(h_preds[i], i);
}
});
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
auto ntop = static_cast<unsigned>(ratio_ * ndata);
if (ntop == 0) ntop = ndata;
@ -175,49 +175,57 @@ struct EvalAuc : public Metric {
const auto& labels = info.labels_.ConstHostVector();
const auto &h_preds = preds.ConstHostVector();
dmlc::OMPException exc;
#pragma omp parallel reduction(+:sum_auc, auc_error) if (ngroups > 1)
{
// Each thread works on a distinct group and sorts the predictions in that group
PredIndPairContainer rec;
#pragma omp for schedule(static)
for (bst_omp_uint group_id = 0; group_id < ngroups; ++group_id) {
// Same thread can work on multiple groups one after another; hence, resize
// the predictions array based on the current group
rec.resize(gptr[group_id + 1] - gptr[group_id]);
#pragma omp parallel for schedule(static) if (!omp_in_parallel())
for (bst_omp_uint j = gptr[group_id]; j < gptr[group_id + 1]; ++j) {
rec[j - gptr[group_id]] = {h_preds[j], j};
}
exc.Run([&]() {
// Each thread works on a distinct group and sorts the predictions in that group
PredIndPairContainer rec;
#pragma omp for schedule(static)
for (bst_omp_uint group_id = 0; group_id < ngroups; ++group_id) {
exc.Run([&]() {
// Same thread can work on multiple groups one after another; hence, resize
// the predictions array based on the current group
rec.resize(gptr[group_id + 1] - gptr[group_id]);
#pragma omp parallel for schedule(static) if (!omp_in_parallel())
for (bst_omp_uint j = gptr[group_id]; j < gptr[group_id + 1]; ++j) {
exc.Run([&]() {
rec[j - gptr[group_id]] = {h_preds[j], j};
});
}
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
// calculate AUC
double sum_pospair = 0.0;
double sum_npos = 0.0, sum_nneg = 0.0, buf_pos = 0.0, buf_neg = 0.0;
for (size_t j = 0; j < rec.size(); ++j) {
const bst_float wt = WeightPolicy::GetWeightOfSortedRecord(info, rec, j, group_id);
const bst_float ctr = labels[rec[j].second];
// keep bucketing predictions in same bucket
if (j != 0 && rec[j].first != rec[j - 1].first) {
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
// calculate AUC
double sum_pospair = 0.0;
double sum_npos = 0.0, sum_nneg = 0.0, buf_pos = 0.0, buf_neg = 0.0;
for (size_t j = 0; j < rec.size(); ++j) {
const bst_float wt = WeightPolicy::GetWeightOfSortedRecord(info, rec, j, group_id);
const bst_float ctr = labels[rec[j].second];
// keep bucketing predictions in same bucket
if (j != 0 && rec[j].first != rec[j - 1].first) {
sum_pospair += buf_neg * (sum_npos + buf_pos * 0.5);
sum_npos += buf_pos;
sum_nneg += buf_neg;
buf_neg = buf_pos = 0.0f;
}
buf_pos += ctr * wt;
buf_neg += (1.0f - ctr) * wt;
}
sum_pospair += buf_neg * (sum_npos + buf_pos * 0.5);
sum_npos += buf_pos;
sum_nneg += buf_neg;
buf_neg = buf_pos = 0.0f;
}
buf_pos += ctr * wt;
buf_neg += (1.0f - ctr) * wt;
// check weird conditions
if (sum_npos <= 0.0 || sum_nneg <= 0.0) {
auc_error += 1;
} else {
// this is the AUC
sum_auc += sum_pospair / (sum_npos * sum_nneg);
}
});
}
sum_pospair += buf_neg * (sum_npos + buf_pos * 0.5);
sum_npos += buf_pos;
sum_nneg += buf_neg;
// check weird conditions
if (sum_npos <= 0.0 || sum_nneg <= 0.0) {
auc_error += 1;
} else {
// this is the AUC
sum_auc += sum_pospair / (sum_npos * sum_nneg);
}
}
});
}
exc.Rethrow();
// Report average AUC across all groups
// In distributed mode, workers which only contains pos or neg samples
@ -316,19 +324,25 @@ struct EvalRank : public Metric, public EvalRankConfig {
const auto &labels = info.labels_.ConstHostVector();
const auto &h_preds = preds.ConstHostVector();
dmlc::OMPException exc;
#pragma omp parallel reduction(+:sum_metric)
{
// each thread takes a local rec
PredIndPairContainer rec;
#pragma omp for schedule(static)
for (bst_omp_uint k = 0; k < ngroups; ++k) {
rec.clear();
for (unsigned j = gptr[k]; j < gptr[k + 1]; ++j) {
rec.emplace_back(h_preds[j], static_cast<int>(labels[j]));
exc.Run([&]() {
// each thread takes a local rec
PredIndPairContainer rec;
#pragma omp for schedule(static)
for (bst_omp_uint k = 0; k < ngroups; ++k) {
exc.Run([&]() {
rec.clear();
for (unsigned j = gptr[k]; j < gptr[k + 1]; ++j) {
rec.emplace_back(h_preds[j], static_cast<int>(labels[j]));
}
sum_metric += this->EvalGroup(&rec);
});
}
sum_metric += this->EvalGroup(&rec);
}
});
}
exc.Rethrow();
}
if (distributed) {
@ -526,66 +540,75 @@ struct EvalAucPR : public Metric {
const auto &h_labels = info.labels_.ConstHostVector();
const auto &h_preds = preds.ConstHostVector();
dmlc::OMPException exc;
#pragma omp parallel reduction(+:sum_auc, auc_error) if (ngroups > 1)
{
// Each thread works on a distinct group and sorts the predictions in that group
PredIndPairContainer rec;
#pragma omp for schedule(static)
for (bst_omp_uint group_id = 0; group_id < ngroups; ++group_id) {
double total_pos = 0.0;
double total_neg = 0.0;
// Same thread can work on multiple groups one after another; hence, resize
// the predictions array based on the current group
rec.resize(gptr[group_id + 1] - gptr[group_id]);
#pragma omp parallel for schedule(static) reduction(+:total_pos, total_neg) \
if (!omp_in_parallel()) // NOLINT
for (bst_omp_uint j = gptr[group_id]; j < gptr[group_id + 1]; ++j) {
const bst_float wt = WeightPolicy::GetWeightOfInstance(info, j, group_id);
total_pos += wt * h_labels[j];
total_neg += wt * (1.0f - h_labels[j]);
rec[j - gptr[group_id]] = {h_preds[j], j};
}
// we need pos > 0 && neg > 0
if (total_pos <= 0.0 || total_neg <= 0.0) {
auc_error += 1;
continue;
}
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
// calculate AUC
double tp = 0.0, prevtp = 0.0, fp = 0.0, prevfp = 0.0, h = 0.0, a = 0.0, b = 0.0;
for (size_t j = 0; j < rec.size(); ++j) {
const bst_float wt = WeightPolicy::GetWeightOfSortedRecord(info, rec, j, group_id);
tp += wt * h_labels[rec[j].second];
fp += wt * (1.0f - h_labels[rec[j].second]);
if ((j < rec.size() - 1 && rec[j].first != rec[j + 1].first) || j == rec.size() - 1) {
if (tp == prevtp) {
a = 1.0;
b = 0.0;
} else {
h = (fp - prevfp) / (tp - prevtp);
a = 1.0 + h;
b = (prevfp - h * prevtp) / total_pos;
exc.Run([&]() {
// Each thread works on a distinct group and sorts the predictions in that group
PredIndPairContainer rec;
#pragma omp for schedule(static)
for (bst_omp_uint group_id = 0; group_id < ngroups; ++group_id) {
exc.Run([&]() {
double total_pos = 0.0;
double total_neg = 0.0;
// Same thread can work on multiple groups one after another; hence, resize
// the predictions array based on the current group
rec.resize(gptr[group_id + 1] - gptr[group_id]);
#pragma omp parallel for schedule(static) reduction(+:total_pos, total_neg) \
if (!omp_in_parallel()) // NOLINT
for (bst_omp_uint j = gptr[group_id]; j < gptr[group_id + 1]; ++j) {
exc.Run([&]() {
const bst_float wt = WeightPolicy::GetWeightOfInstance(info, j, group_id);
total_pos += wt * h_labels[j];
total_neg += wt * (1.0f - h_labels[j]);
rec[j - gptr[group_id]] = {h_preds[j], j};
});
}
if (0.0 != b) {
sum_auc += (tp / total_pos - prevtp / total_pos -
b / a * (std::log(a * tp / total_pos + b) -
std::log(a * prevtp / total_pos + b))) / a;
} else {
sum_auc += (tp / total_pos - prevtp / total_pos) / a;
// we need pos > 0 && neg > 0
if (total_pos <= 0.0 || total_neg <= 0.0) {
auc_error += 1;
return;
}
prevtp = tp;
prevfp = fp;
}
XGBOOST_PARALLEL_SORT(rec.begin(), rec.end(), common::CmpFirst);
// calculate AUC
double tp = 0.0, prevtp = 0.0, fp = 0.0, prevfp = 0.0, h = 0.0, a = 0.0, b = 0.0;
for (size_t j = 0; j < rec.size(); ++j) {
const bst_float wt = WeightPolicy::GetWeightOfSortedRecord(info, rec, j, group_id);
tp += wt * h_labels[rec[j].second];
fp += wt * (1.0f - h_labels[rec[j].second]);
if ((j < rec.size() - 1 && rec[j].first != rec[j + 1].first) ||
j == rec.size() - 1) {
if (tp == prevtp) {
a = 1.0;
b = 0.0;
} else {
h = (fp - prevfp) / (tp - prevtp);
a = 1.0 + h;
b = (prevfp - h * prevtp) / total_pos;
}
if (0.0 != b) {
sum_auc += (tp / total_pos - prevtp / total_pos -
b / a * (std::log(a * tp / total_pos + b) -
std::log(a * prevtp / total_pos + b))) / a;
} else {
sum_auc += (tp / total_pos - prevtp / total_pos) / a;
}
prevtp = tp;
prevfp = fp;
}
}
// sanity check
if (tp < 0 || prevtp < 0 || fp < 0 || prevfp < 0) {
CHECK(!auc_error) << "AUC-PR: error in calculation";
}
});
}
// sanity check
if (tp < 0 || prevtp < 0 || fp < 0 || prevfp < 0) {
CHECK(!auc_error) << "AUC-PR: error in calculation";
}
}
});
}
exc.Rethrow();
// Report average AUC-PR across all groups
// In distributed mode, workers which only contains pos or neg samples

View File

@ -58,15 +58,19 @@ class ElementWiseSurvivalMetricsReduction {
double residue_sum = 0;
double weights_sum = 0;
dmlc::OMPException exc;
#pragma omp parallel for reduction(+: residue_sum, weights_sum) schedule(static)
for (omp_ulong i = 0; i < ndata; ++i) {
const double wt = h_weights.empty() ? 1.0 : static_cast<double>(h_weights[i]);
residue_sum += policy_.EvalRow(
static_cast<double>(h_labels_lower_bound[i]),
static_cast<double>(h_labels_upper_bound[i]),
static_cast<double>(h_preds[i])) * wt;
weights_sum += wt;
exc.Run([&]() {
const double wt = h_weights.empty() ? 1.0 : static_cast<double>(h_weights[i]);
residue_sum += policy_.EvalRow(
static_cast<double>(h_labels_lower_bound[i]),
static_cast<double>(h_labels_upper_bound[i]),
static_cast<double>(h_preds[i])) * wt;
weights_sum += wt;
});
}
exc.Rethrow();
PackedReduceResult res{residue_sum, weights_sum};
return res;
}

View File

@ -823,72 +823,80 @@ class LambdaRankObj : public ObjFunction {
const auto ngroup = static_cast<bst_omp_uint>(gptr.size() - 1);
out_gpair->Resize(preds.Size());
dmlc::OMPException exc;
#pragma omp parallel
{
// parallel construct, declare random number generator here, so that each
// thread use its own random number generator, seed by thread id and current iteration
std::minstd_rand rnd((iter + 1) * 1111);
std::vector<LambdaPair> pairs;
std::vector<ListEntry> lst;
std::vector< std::pair<bst_float, unsigned> > rec;
exc.Run([&]() {
// parallel construct, declare random number generator here, so that each
// thread use its own random number generator, seed by thread id and current iteration
std::minstd_rand rnd((iter + 1) * 1111);
std::vector<LambdaPair> pairs;
std::vector<ListEntry> lst;
std::vector< std::pair<bst_float, unsigned> > rec;
#pragma omp for schedule(static)
for (bst_omp_uint k = 0; k < ngroup; ++k) {
lst.clear(); pairs.clear();
for (unsigned j = gptr[k]; j < gptr[k+1]; ++j) {
lst.emplace_back(preds_h[j], labels[j], j);
gpair[j] = GradientPair(0.0f, 0.0f);
}
std::stable_sort(lst.begin(), lst.end(), ListEntry::CmpPred);
rec.resize(lst.size());
for (unsigned i = 0; i < lst.size(); ++i) {
rec[i] = std::make_pair(lst[i].label, i);
}
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
// enumerate buckets with same label, for each item in the lst, grab another sample randomly
for (unsigned i = 0; i < rec.size(); ) {
unsigned j = i + 1;
while (j < rec.size() && rec[j].first == rec[i].first) ++j;
// bucket in [i,j), get a sample outside bucket
unsigned nleft = i, nright = static_cast<unsigned>(rec.size() - j);
if (nleft + nright != 0) {
int nsample = param_.num_pairsample;
while (nsample --) {
for (unsigned pid = i; pid < j; ++pid) {
unsigned ridx = std::uniform_int_distribution<unsigned>(0, nleft + nright - 1)(rnd);
if (ridx < nleft) {
pairs.emplace_back(rec[ridx].second, rec[pid].second,
info.GetWeight(k) * weight_normalization_factor);
} else {
pairs.emplace_back(rec[pid].second, rec[ridx+j-i].second,
info.GetWeight(k) * weight_normalization_factor);
#pragma omp for schedule(static)
for (bst_omp_uint k = 0; k < ngroup; ++k) {
exc.Run([&]() {
lst.clear(); pairs.clear();
for (unsigned j = gptr[k]; j < gptr[k+1]; ++j) {
lst.emplace_back(preds_h[j], labels[j], j);
gpair[j] = GradientPair(0.0f, 0.0f);
}
std::stable_sort(lst.begin(), lst.end(), ListEntry::CmpPred);
rec.resize(lst.size());
for (unsigned i = 0; i < lst.size(); ++i) {
rec[i] = std::make_pair(lst[i].label, i);
}
std::stable_sort(rec.begin(), rec.end(), common::CmpFirst);
// enumerate buckets with same label
// for each item in the lst, grab another sample randomly
for (unsigned i = 0; i < rec.size(); ) {
unsigned j = i + 1;
while (j < rec.size() && rec[j].first == rec[i].first) ++j;
// bucket in [i,j), get a sample outside bucket
unsigned nleft = i, nright = static_cast<unsigned>(rec.size() - j);
if (nleft + nright != 0) {
int nsample = param_.num_pairsample;
while (nsample --) {
for (unsigned pid = i; pid < j; ++pid) {
unsigned ridx =
std::uniform_int_distribution<unsigned>(0, nleft + nright - 1)(rnd);
if (ridx < nleft) {
pairs.emplace_back(rec[ridx].second, rec[pid].second,
info.GetWeight(k) * weight_normalization_factor);
} else {
pairs.emplace_back(rec[pid].second, rec[ridx+j-i].second,
info.GetWeight(k) * weight_normalization_factor);
}
}
}
}
i = j;
}
}
i = j;
// get lambda weight for the pairs
LambdaWeightComputerT::GetLambdaWeight(lst, &pairs);
// rescale each gradient and hessian so that the lst have constant weighted
float scale = 1.0f / param_.num_pairsample;
if (param_.fix_list_weight != 0.0f) {
scale *= param_.fix_list_weight / (gptr[k + 1] - gptr[k]);
}
for (auto & pair : pairs) {
const ListEntry &pos = lst[pair.pos_index];
const ListEntry &neg = lst[pair.neg_index];
const bst_float w = pair.weight * scale;
const float eps = 1e-16f;
bst_float p = common::Sigmoid(pos.pred - neg.pred);
bst_float g = p - 1.0f;
bst_float h = std::max(p * (1.0f - p), eps);
// accumulate gradient and hessian in both pid, and nid
gpair[pos.rindex] += GradientPair(g * w, 2.0f*w*h);
gpair[neg.rindex] += GradientPair(-g * w, 2.0f*w*h);
}
});
}
// get lambda weight for the pairs
LambdaWeightComputerT::GetLambdaWeight(lst, &pairs);
// rescale each gradient and hessian so that the lst have constant weighted
float scale = 1.0f / param_.num_pairsample;
if (param_.fix_list_weight != 0.0f) {
scale *= param_.fix_list_weight / (gptr[k + 1] - gptr[k]);
}
for (auto & pair : pairs) {
const ListEntry &pos = lst[pair.pos_index];
const ListEntry &neg = lst[pair.neg_index];
const bst_float w = pair.weight * scale;
const float eps = 1e-16f;
bst_float p = common::Sigmoid(pos.pred - neg.pred);
bst_float g = p - 1.0f;
bst_float h = std::max(p * (1.0f - p), eps);
// accumulate gradient and hessian in both pid, and nid
gpair[pos.rindex] += GradientPair(g * w, 2.0f*w*h);
gpair[neg.rindex] += GradientPair(-g * w, 2.0f*w*h);
}
}
});
}
exc.Rethrow();
}
#if defined(__CUDACC__)

View File

@ -19,6 +19,7 @@
#include "../common/transform.h"
#include "../common/common.h"
#include "../common/threading_utils.h"
#include "./regression_loss.h"
@ -345,10 +346,9 @@ class CoxRegression : public ObjFunction {
void PredTransform(HostDeviceVector<bst_float> *io_preds) override {
std::vector<bst_float> &preds = io_preds->HostVector();
const long ndata = static_cast<long>(preds.size()); // NOLINT(*)
#pragma omp parallel for schedule(static)
for (long j = 0; j < ndata; ++j) { // NOLINT(*)
common::ParallelFor(ndata, [&](long j) { // NOLINT(*)
preds[j] = std::exp(preds[j]);
}
});
}
void EvalTransform(HostDeviceVector<bst_float> *io_preds) override {
PredTransform(io_preds);

View File

@ -18,6 +18,7 @@
#include "../data/adapter.h"
#include "../common/math.h"
#include "../common/threading_utils.h"
#include "../gbm/gbtree_model.h"
namespace xgboost {
@ -157,8 +158,7 @@ void PredictBatchByBlockOfRowsKernel(DataView batch, std::vector<bst_float> *out
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
const int num_feature = model.learner_model_param->num_feature;
const bst_omp_uint n_row_blocks = (nsize) / block_of_rows_size + !!((nsize) % block_of_rows_size);
#pragma omp parallel for schedule(static)
for (bst_omp_uint block_id = 0; block_id < n_row_blocks; ++block_id) {
common::ParallelFor(n_row_blocks, [&](bst_omp_uint block_id) {
const size_t batch_offset = block_id * block_of_rows_size;
const size_t block_size = std::min(nsize - batch_offset, block_of_rows_size);
const size_t fvec_offset = omp_get_thread_num() * block_of_rows_size;
@ -168,7 +168,7 @@ void PredictBatchByBlockOfRowsKernel(DataView batch, std::vector<bst_float> *out
PredictByAllTrees(model, tree_begin, tree_end, out_preds, batch_offset + batch.base_rowid,
num_group, thread_temp, fvec_offset, block_size);
FVecDrop(block_size, batch_offset, &batch, fvec_offset, p_thread_temp);
}
});
}
class CPUPredictor : public Predictor {
@ -335,8 +335,7 @@ class CPUPredictor : public Predictor {
// parallel over local batch
auto page = batch.GetView();
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
common::ParallelFor(nsize, [&](bst_omp_uint i) {
const int tid = omp_get_thread_num();
auto ridx = static_cast<size_t>(batch.base_rowid + i);
RegTree::FVec &feats = feat_vecs[tid];
@ -349,7 +348,7 @@ class CPUPredictor : public Predictor {
preds[ridx * ntree_limit + j] = static_cast<bst_float>(tid);
}
feats.Drop(page[i]);
}
});
}
}
@ -378,18 +377,16 @@ class CPUPredictor : public Predictor {
// allocated one
std::fill(contribs.begin(), contribs.end(), 0);
// initialize tree node mean values
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < ntree_limit; ++i) {
common::ParallelFor(bst_omp_uint(ntree_limit), [&](bst_omp_uint i) {
model.trees[i]->FillNodeMeanValues();
}
});
const std::vector<bst_float>& base_margin = info.base_margin_.HostVector();
// start collecting the contributions
for (const auto &batch : p_fmat->GetBatches<SparsePage>()) {
auto page = batch.GetView();
// parallel over local batch
const auto nsize = static_cast<bst_omp_uint>(batch.Size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nsize; ++i) {
common::ParallelFor(nsize, [&](bst_omp_uint i) {
auto row_idx = static_cast<size_t>(batch.base_rowid + i);
RegTree::FVec &feats = feat_vecs[omp_get_thread_num()];
if (feats.Size() == 0) {
@ -425,7 +422,7 @@ class CPUPredictor : public Predictor {
p_contribs[ncolumns - 1] += model.learner_model_param->base_score;
}
}
}
});
}
}

View File

@ -25,6 +25,7 @@
#include "../common/io.h"
#include "../common/random.h"
#include "../common/quantile.h"
#include "../common/threading_utils.h"
namespace xgboost {
namespace tree {
@ -221,8 +222,7 @@ class BaseMaker: public TreeUpdater {
// so that they are ignored in future statistics collection
const auto ndata = static_cast<bst_omp_uint>(p_fmat->Info().num_row_);
#pragma omp parallel for schedule(static)
for (bst_omp_uint ridx = 0; ridx < ndata; ++ridx) {
common::ParallelFor(ndata, [&](bst_omp_uint ridx) {
const int nid = this->DecodePosition(ridx);
if (tree[nid].IsLeaf()) {
// mark finish when it is not a fresh leaf
@ -237,7 +237,7 @@ class BaseMaker: public TreeUpdater {
this->SetEncodePosition(ridx, tree[nid].RightChild());
}
}
}
});
}
/*!
* \brief this is helper function uses column based data structure,
@ -257,8 +257,7 @@ class BaseMaker: public TreeUpdater {
if (it != sorted_split_set.end() && *it == fid) {
const auto ndata = static_cast<bst_omp_uint>(col.size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint j = 0; j < ndata; ++j) {
common::ParallelFor(ndata, [&](bst_omp_uint j) {
const bst_uint ridx = col[j].index;
const bst_float fvalue = col[j].fvalue;
const int nid = this->DecodePosition(ridx);
@ -273,7 +272,7 @@ class BaseMaker: public TreeUpdater {
this->SetEncodePosition(ridx, tree[pid].RightChild());
}
}
}
});
}
}
}
@ -314,8 +313,7 @@ class BaseMaker: public TreeUpdater {
for (auto fid : fsplits) {
auto col = page[fid];
const auto ndata = static_cast<bst_omp_uint>(col.size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint j = 0; j < ndata; ++j) {
common::ParallelFor(ndata, [&](bst_omp_uint j) {
const bst_uint ridx = col[j].index;
const bst_float fvalue = col[j].fvalue;
const int nid = this->DecodePosition(ridx);
@ -327,7 +325,7 @@ class BaseMaker: public TreeUpdater {
this->SetEncodePosition(ridx, tree[nid].RightChild());
}
}
}
});
}
}
}
@ -341,24 +339,27 @@ class BaseMaker: public TreeUpdater {
std::vector< std::vector<TStats> > &thread_temp = *p_thread_temp;
thread_temp.resize(omp_get_max_threads());
p_node_stats->resize(tree.param.num_nodes);
dmlc::OMPException exc;
#pragma omp parallel
{
const int tid = omp_get_thread_num();
thread_temp[tid].resize(tree.param.num_nodes, TStats());
for (unsigned int nid : qexpand_) {
thread_temp[tid][nid] = TStats();
}
exc.Run([&]() {
const int tid = omp_get_thread_num();
thread_temp[tid].resize(tree.param.num_nodes, TStats());
for (unsigned int nid : qexpand_) {
thread_temp[tid][nid] = TStats();
}
});
}
exc.Rethrow();
// setup position
const auto ndata = static_cast<bst_omp_uint>(fmat.Info().num_row_);
#pragma omp parallel for schedule(static)
for (bst_omp_uint ridx = 0; ridx < ndata; ++ridx) {
common::ParallelFor(ndata, [&](bst_omp_uint ridx) {
const int nid = position_[ridx];
const int tid = omp_get_thread_num();
if (nid >= 0) {
thread_temp[tid][nid].Add(gpair[ridx]);
}
}
});
// sum the per thread statistics together
for (int nid : qexpand_) {
TStats &s = (*p_node_stats)[nid];

View File

@ -264,12 +264,16 @@ class ColMaker: public TreeUpdater {
const MetaInfo& info = fmat.Info();
// setup position
const auto ndata = static_cast<bst_omp_uint>(info.num_row_);
dmlc::OMPException exc;
#pragma omp parallel for schedule(static)
for (bst_omp_uint ridx = 0; ridx < ndata; ++ridx) {
const int tid = omp_get_thread_num();
if (position_[ridx] < 0) continue;
stemp_[tid][position_[ridx]].stats.Add(gpair[ridx]);
exc.Run([&]() {
const int tid = omp_get_thread_num();
if (position_[ridx] < 0) return;
stemp_[tid][position_[ridx]].stats.Add(gpair[ridx]);
});
}
exc.Rethrow();
// sum the per thread statistics together
for (int nid : qexpand) {
GradStats stats;
@ -447,11 +451,11 @@ class ColMaker: public TreeUpdater {
std::max(static_cast<int>(num_features / this->nthread_ / 32), 1);
#endif // defined(_OPENMP)
{
dmlc::OMPException omp_handler;
auto page = batch.GetView();
dmlc::OMPException exc;
#pragma omp parallel for schedule(dynamic, batch_size)
for (bst_omp_uint i = 0; i < num_features; ++i) {
omp_handler.Run([&]() {
exc.Run([&]() {
auto evaluator = tree_evaluator_.GetEvaluator();
bst_feature_t const fid = feat_set[i];
int32_t const tid = omp_get_thread_num();
@ -461,16 +465,16 @@ class ColMaker: public TreeUpdater {
if (colmaker_train_param_.NeedForwardSearch(
param_.default_direction, column_densities_[fid], ind)) {
this->EnumerateSplit(c.data(), c.data() + c.size(), +1, fid,
gpair, stemp_[tid], evaluator);
gpair, stemp_[tid], evaluator);
}
if (colmaker_train_param_.NeedBackwardSearch(
param_.default_direction)) {
this->EnumerateSplit(c.data() + c.size() - 1, c.data() - 1, -1,
fid, gpair, stemp_[tid], evaluator);
fid, gpair, stemp_[tid], evaluator);
}
});
}
omp_handler.Rethrow();
exc.Rethrow();
}
}
// find splits at current level, do split per level
@ -521,8 +525,7 @@ class ColMaker: public TreeUpdater {
// so that they are ignored in future statistics collection
const auto ndata = static_cast<bst_omp_uint>(p_fmat->Info().num_row_);
#pragma omp parallel for schedule(static)
for (bst_omp_uint ridx = 0; ridx < ndata; ++ridx) {
common::ParallelFor(ndata, [&](bst_omp_uint ridx) {
CHECK_LT(ridx, position_.size())
<< "ridx exceed bound " << "ridx="<< ridx << " pos=" << position_.size();
const int nid = this->DecodePosition(ridx);
@ -539,7 +542,7 @@ class ColMaker: public TreeUpdater {
this->SetEncodePosition(ridx, tree[nid].RightChild());
}
}
}
});
}
// customization part
// synchronize the best solution of each node
@ -568,8 +571,7 @@ class ColMaker: public TreeUpdater {
for (auto fid : fsplits) {
auto col = page[fid];
const auto ndata = static_cast<bst_omp_uint>(col.size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint j = 0; j < ndata; ++j) {
common::ParallelFor(ndata, [&](bst_omp_uint j) {
const bst_uint ridx = col[j].index;
const int nid = this->DecodePosition(ridx);
const bst_float fvalue = col[j].fvalue;
@ -581,7 +583,7 @@ class ColMaker: public TreeUpdater {
this->SetEncodePosition(ridx, tree[nid].RightChild());
}
}
}
});
}
}
}

View File

@ -202,22 +202,26 @@ class HistMaker: public BaseMaker {
std::vector<SplitEntry> sol(qexpand_.size());
std::vector<GradStats> left_sum(qexpand_.size());
auto nexpand = static_cast<bst_omp_uint>(qexpand_.size());
dmlc::OMPException exc;
#pragma omp parallel for schedule(dynamic, 1)
for (bst_omp_uint wid = 0; wid < nexpand; ++wid) {
const int nid = qexpand_[wid];
CHECK_EQ(node2workindex_[nid], static_cast<int>(wid));
SplitEntry &best = sol[wid];
GradStats &node_sum = wspace_.hset[0][num_feature + wid * (num_feature + 1)].data[0];
for (size_t i = 0; i < feature_set.size(); ++i) {
// Query is thread safe as it's a const function.
if (!this->interaction_constraints_.Query(nid, feature_set[i])) {
continue;
}
exc.Run([&]() {
const int nid = qexpand_[wid];
CHECK_EQ(node2workindex_[nid], static_cast<int>(wid));
SplitEntry &best = sol[wid];
GradStats &node_sum = wspace_.hset[0][num_feature + wid * (num_feature + 1)].data[0];
for (size_t i = 0; i < feature_set.size(); ++i) {
// Query is thread safe as it's a const function.
if (!this->interaction_constraints_.Query(nid, feature_set[i])) {
continue;
}
EnumerateSplit(this->wspace_.hset[0][i + wid * (num_feature+1)],
node_sum, feature_set[i], &best, &left_sum[wid]);
}
EnumerateSplit(this->wspace_.hset[0][i + wid * (num_feature+1)],
node_sum, feature_set[i], &best, &left_sum[wid]);
}
});
}
exc.Rethrow();
// get the best result, we can synchronize the solution
for (bst_omp_uint wid = 0; wid < nexpand; ++wid) {
const bst_node_t nid = qexpand_[wid];
@ -341,16 +345,20 @@ class CQHistMaker: public HistMaker {
auto page = batch.GetView();
// start enumeration
const auto nsize = static_cast<bst_omp_uint>(fset.size());
dmlc::OMPException exc;
#pragma omp parallel for schedule(dynamic, 1)
for (bst_omp_uint i = 0; i < nsize; ++i) {
int fid = fset[i];
int offset = feat2workindex_[fid];
if (offset >= 0) {
this->UpdateHistCol(gpair, page[fid], info, tree,
fset, offset,
&thread_hist_[omp_get_thread_num()]);
}
exc.Run([&]() {
int fid = fset[i];
int offset = feat2workindex_[fid];
if (offset >= 0) {
this->UpdateHistCol(gpair, page[fid], info, tree,
fset, offset,
&thread_hist_[omp_get_thread_num()]);
}
});
}
exc.Rethrow();
}
// update node statistics.
this->GetNodeStats(gpair, *p_fmat, tree,
@ -417,16 +425,20 @@ class CQHistMaker: public HistMaker {
auto page = batch.GetView();
// start enumeration
const auto nsize = static_cast<bst_omp_uint>(work_set_.size());
dmlc::OMPException exc;
#pragma omp parallel for schedule(dynamic, 1)
for (bst_omp_uint i = 0; i < nsize; ++i) {
int fid = work_set_[i];
int offset = feat2workindex_[fid];
if (offset >= 0) {
this->UpdateSketchCol(gpair, page[fid], tree,
work_set_size, offset,
&thread_sketch_[omp_get_thread_num()]);
}
exc.Run([&]() {
int fid = work_set_[i];
int offset = feat2workindex_[fid];
if (offset >= 0) {
this->UpdateSketchCol(gpair, page[fid], tree,
work_set_size, offset,
&thread_sketch_[omp_get_thread_num()]);
}
});
}
exc.Rethrow();
}
for (size_t i = 0; i < sketchs_.size(); ++i) {
common::WXQuantileSketch<bst_float, bst_float>::SummaryContainer out;
@ -701,16 +713,20 @@ class GlobalProposalHistMaker: public CQHistMaker {
// start enumeration
const auto nsize = static_cast<bst_omp_uint>(this->work_set_.size());
dmlc::OMPException exc;
#pragma omp parallel for schedule(dynamic, 1)
for (bst_omp_uint i = 0; i < nsize; ++i) {
int fid = this->work_set_[i];
int offset = this->feat2workindex_[fid];
if (offset >= 0) {
this->UpdateHistCol(gpair, page[fid], info, tree,
fset, offset,
&this->thread_hist_[omp_get_thread_num()]);
}
exc.Run([&]() {
int fid = this->work_set_[i];
int offset = this->feat2workindex_[fid];
if (offset >= 0) {
this->UpdateHistCol(gpair, page[fid], info, tree,
fset, offset,
&this->thread_hist_[omp_get_thread_num()]);
}
});
}
exc.Rethrow();
}
// update node statistics.

View File

@ -713,20 +713,24 @@ void QuantileHistMaker::Builder<GradientSumT>::InitSampling(const std::vector<Gr
const size_t discard_size = info.num_row_ / nthread;
auto upper_border = static_cast<float>(std::numeric_limits<uint32_t>::max());
uint32_t coin_flip_border = static_cast<uint32_t>(upper_border * param_.subsample);
dmlc::OMPException exc;
#pragma omp parallel num_threads(nthread)
{
const size_t tid = omp_get_thread_num();
const size_t ibegin = tid * discard_size;
const size_t iend = (tid == (nthread - 1)) ?
info.num_row_ : ibegin + discard_size;
exc.Run([&]() {
const size_t tid = omp_get_thread_num();
const size_t ibegin = tid * discard_size;
const size_t iend = (tid == (nthread - 1)) ?
info.num_row_ : ibegin + discard_size;
rnds[tid].discard(discard_size * tid);
for (size_t i = ibegin; i < iend; ++i) {
if (gpair[i].GetHess() >= 0.0f && rnds[tid]() < coin_flip_border) {
p_row_indices[ibegin + row_offsets[tid]++] = i;
rnds[tid].discard(discard_size * tid);
for (size_t i = ibegin; i < iend; ++i) {
if (gpair[i].GetHess() >= 0.0f && rnds[tid]() < coin_flip_border) {
p_row_indices[ibegin + row_offsets[tid]++] = i;
}
}
}
});
}
exc.Rethrow();
/* discard global engine */
rnd = rnds[nthread - 1];
size_t prefix_sum = row_offsets[0];
@ -769,10 +773,14 @@ void QuantileHistMaker::Builder<GradientSumT>::InitData(const GHistIndexMatrix&
hist_buffer_.Init(nbins);
// initialize histogram builder
dmlc::OMPException exc;
#pragma omp parallel
{
this->nthread_ = omp_get_num_threads();
exc.Run([&]() {
this->nthread_ = omp_get_num_threads();
});
}
exc.Rethrow();
hist_builder_ = GHistBuilder<GradientSumT>(this->nthread_, nbins);
std::vector<size_t>& row_indices = *row_set_collection_.Data();
@ -794,18 +802,21 @@ void QuantileHistMaker::Builder<GradientSumT>::InitData(const GHistIndexMatrix&
#pragma omp parallel num_threads(this->nthread_)
{
const size_t tid = omp_get_thread_num();
const size_t ibegin = tid * block_size;
const size_t iend = std::min(static_cast<size_t>(ibegin + block_size),
static_cast<size_t>(info.num_row_));
exc.Run([&]() {
const size_t tid = omp_get_thread_num();
const size_t ibegin = tid * block_size;
const size_t iend = std::min(static_cast<size_t>(ibegin + block_size),
static_cast<size_t>(info.num_row_));
for (size_t i = ibegin; i < iend; ++i) {
if (gpair[i].GetHess() < 0.0f) {
p_buff[tid] = true;
break;
for (size_t i = ibegin; i < iend; ++i) {
if (gpair[i].GetHess() < 0.0f) {
p_buff[tid] = true;
break;
}
}
}
});
}
exc.Rethrow();
bool has_neg_hess = false;
for (int32_t tid = 0; tid < this->nthread_; ++tid) {
@ -825,14 +836,17 @@ void QuantileHistMaker::Builder<GradientSumT>::InitData(const GHistIndexMatrix&
} else {
#pragma omp parallel num_threads(this->nthread_)
{
const size_t tid = omp_get_thread_num();
const size_t ibegin = tid * block_size;
const size_t iend = std::min(static_cast<size_t>(ibegin + block_size),
static_cast<size_t>(info.num_row_));
for (size_t i = ibegin; i < iend; ++i) {
p_row_indices[i] = i;
}
exc.Run([&]() {
const size_t tid = omp_get_thread_num();
const size_t ibegin = tid * block_size;
const size_t iend = std::min(static_cast<size_t>(ibegin + block_size),
static_cast<size_t>(info.num_row_));
for (size_t i = ibegin; i < iend; ++i) {
p_row_indices[i] = i;
}
});
}
exc.Rethrow();
}
}
}

View File

@ -13,6 +13,7 @@
#include "xgboost/json.h"
#include "./param.h"
#include "../common/io.h"
#include "../common/threading_utils.h"
namespace xgboost {
namespace tree {
@ -52,17 +53,21 @@ class TreeRefresher: public TreeUpdater {
const int nthread = omp_get_max_threads();
fvec_temp.resize(nthread, RegTree::FVec());
stemp.resize(nthread, std::vector<GradStats>());
dmlc::OMPException exc;
#pragma omp parallel
{
int tid = omp_get_thread_num();
int num_nodes = 0;
for (auto tree : trees) {
num_nodes += tree->param.num_nodes;
}
stemp[tid].resize(num_nodes, GradStats());
std::fill(stemp[tid].begin(), stemp[tid].end(), GradStats());
fvec_temp[tid].Init(trees[0]->param.num_feature);
exc.Run([&]() {
int tid = omp_get_thread_num();
int num_nodes = 0;
for (auto tree : trees) {
num_nodes += tree->param.num_nodes;
}
stemp[tid].resize(num_nodes, GradStats());
std::fill(stemp[tid].begin(), stemp[tid].end(), GradStats());
fvec_temp[tid].Init(trees[0]->param.num_feature);
});
}
exc.Rethrow();
// if it is C++11, use lazy evaluation for Allreduce,
// to gain speedup in recovery
auto lazy_get_stats = [&]() {
@ -72,8 +77,7 @@ class TreeRefresher: public TreeUpdater {
auto page = batch.GetView();
CHECK_LT(batch.Size(), std::numeric_limits<unsigned>::max());
const auto nbatch = static_cast<bst_omp_uint>(batch.Size());
#pragma omp parallel for schedule(static)
for (bst_omp_uint i = 0; i < nbatch; ++i) {
common::ParallelFor(nbatch, [&](bst_omp_uint i) {
SparsePage::Inst inst = page[i];
const int tid = omp_get_thread_num();
const auto ridx = static_cast<bst_uint>(batch.base_rowid + i);
@ -86,16 +90,15 @@ class TreeRefresher: public TreeUpdater {
offset += tree->param.num_nodes;
}
feats.Drop(inst);
}
});
}
// aggregate the statistics
auto num_nodes = static_cast<int>(stemp[0].size());
#pragma omp parallel for schedule(static)
for (int nid = 0; nid < num_nodes; ++nid) {
common::ParallelFor(num_nodes, [&](int nid) {
for (int tid = 1; tid < nthread; ++tid) {
stemp[0][nid].Add(stemp[tid][nid]);
}
}
});
};
reducer_.Allreduce(dmlc::BeginPtr(stemp[0]), stemp[0].size(), lazy_get_stats);
// rescale learning rate according to size of trees