* Support categorical data for dask functional interface and DQM.
* Implement categorical data support for GPU GK-merge.
* Add support for dask functional interface.
* Add support for DQM.
* Get newer cupy.
* Change C API name.
* Test for all primitive types from array.
* Add native support for CPU 128 float.
* Convert boolean and float16 in Python.
* Fix dask version for now.
* Re-implement ROC-AUC.
* Binary
* MultiClass
* LTR
* Add documents.
This PR resolves a few issues:
- Define a value when the dataset is invalid, which can happen if there's an
empty dataset, or when the dataset contains only positive or negative values.
- Define ROC-AUC for multi-class classification.
- Define weighted average value for distributed setting.
- A correct implementation for learning to rank task. Previous
implementation is just binary classification with averaging across groups,
which doesn't measure ordered learning to rank.
* [dask] Use `distributed.MultiLock`
This enables training multiple models in parallel.
* Conditionally import `MultiLock`.
* Use async train directly in scikit learn interface.
* Use `worker_client` when available.
* Add a new API function for predicting on `DMatrix`. This function aligns
with rest of the `XGBoosterPredictFrom*` functions on semantic of function
arguments.
* Purge `ntree_limit` from libxgboost, use iteration instead.
* [dask] Use `inplace_predict` by default for dask sklearn models.
* [dask] Run prediction shape inference on worker instead of client.
The breaking change is in the Python sklearn `apply` function, I made it to be
consistent with other prediction functions where `best_iteration` is used by
default.
* Accept array interface for csr and array.
* Accept an optional proxy dmatrix for metainfo.
This constructs an explicit `_ProxyDMatrix` type in Python.
* Remove unused doc.
* Add strict output.
This PR ensures all DMatrix types have a common interface.
* Fix logic in avoiding duplicated DMatrix in sklearn.
* Check for consistency between DMatrix types.
* Add doc for bounds.
* Initial support for distributed LTR using dask.
* Support `qid` in libxgboost.
* Refactor `predict` and `n_features_in_`, `best_[score/iteration/ntree_limit]`
to avoid duplicated code.
* Define `DaskXGBRanker`.
The dask ranker doesn't support group structure, instead it uses query id and
convert to group ptr internally.
* Do not derive from unittest.TestCase (not needed for pytest)
* assertRaises -> pytest.raises
* Simplify test_empty_dmatrix with test parametrization
* setUpClass -> setup_class, tearDownClass -> teardown_class
* Don't import unittest; import pytest
* Use plain assert
* Use parametrized tests in more places
* Fix test_gpu_with_sklearn.py
* Put back run_empty_dmatrix_reg / run_empty_dmatrix_cls
* Fix test_eta_decay_gpu_hist
* Add parametrized tests for monotone constraints
* Fix test names
* Remove test parametrization
* Revise test_slice to be not flaky
* Make external memory data partitioning deterministic.
* Change the meaning of `page_size` from bytes to number of rows.
* Design a data pool.
* Note for external memory.
* Enable unity build on Windows CI.
* Force garbage collect on test.
* Deprecate LabelEncoder in XGBClassifier; skip LabelEncoder for cuDF/cuPy inputs
* Add unit tests for cuDF and cuPy inputs with XGBClassifier
* Fix lint
* Clarify warning
* Move use_label_encoder option to XGBClassifier constructor
* Add a test for cudf.Series
* Add use_label_encoder to XGBRFClassifier doc
* Address reviewer feedback