Add enable_categorical to sklearn. (#7011)

This commit is contained in:
Jiaming Yuan 2021-06-04 02:29:14 +08:00 committed by GitHub
parent 655e6992f6
commit c4b9f4f622
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 58 additions and 1 deletions

View File

@ -1642,6 +1642,7 @@ class DaskXGBRegressor(DaskScikitLearnBase, XGBRegressorBase):
eval_group=None,
eval_qid=None,
missing=self.missing,
enable_categorical=self.enable_categorical,
)
if callable(self.objective):
@ -1730,6 +1731,7 @@ class DaskXGBClassifier(DaskScikitLearnBase, XGBClassifierBase):
eval_group=None,
eval_qid=None,
missing=self.missing,
enable_categorical=self.enable_categorical,
)
# pylint: disable=attribute-defined-outside-init
@ -1927,6 +1929,7 @@ class DaskXGBRanker(DaskScikitLearnBase, XGBRankerMixIn):
eval_group=None,
eval_qid=eval_qid,
missing=self.missing,
enable_categorical=self.enable_categorical,
)
if eval_metric is not None:
if callable(eval_metric):

View File

@ -164,6 +164,14 @@ __model_doc = f'''
validate_parameters : Optional[bool]
Give warnings for unknown parameter.
enable_categorical : bool
.. versionadded:: 1.5.0
Experimental support for categorical data. Do not set to true unless you are
interested in development. Only valid when `gpu_hist` and pandas dataframe are
used.
kwargs : dict, optional
Keyword arguments for XGBoost Booster object. Full documentation of
parameters can be found here:
@ -257,6 +265,7 @@ def _wrap_evaluation_matrices(
eval_group: Optional[List[Any]],
eval_qid: Optional[List[Any]],
create_dmatrix: Callable,
enable_categorical: bool,
label_transform: Callable = lambda x: x,
) -> Tuple[Any, Optional[List[Tuple[Any, str]]]]:
"""Convert array_like evaluation matrices into DMatrix. Perform validation on the way.
@ -271,6 +280,7 @@ def _wrap_evaluation_matrices(
base_margin=base_margin,
feature_weights=feature_weights,
missing=missing,
enable_categorical=enable_categorical,
)
n_validation = 0 if eval_set is None else len(eval_set)
@ -317,6 +327,7 @@ def _wrap_evaluation_matrices(
qid=eval_qid[i],
base_margin=base_margin_eval_set[i],
missing=missing,
enable_categorical=enable_categorical,
)
evals.append(m)
nevals = len(evals)
@ -375,6 +386,7 @@ class XGBModel(XGBModelBase):
gpu_id: Optional[int] = None,
validate_parameters: Optional[bool] = None,
predictor: Optional[str] = None,
enable_categorical: bool = False,
**kwargs: Any
) -> None:
if not SKLEARN_INSTALLED:
@ -411,6 +423,7 @@ class XGBModel(XGBModelBase):
self.gpu_id = gpu_id
self.validate_parameters = validate_parameters
self.predictor = predictor
self.enable_categorical = enable_categorical
def _more_tags(self) -> Dict[str, bool]:
'''Tags used for scikit-learn data validation.'''
@ -514,7 +527,9 @@ class XGBModel(XGBModelBase):
params = self.get_params()
# Parameters that should not go into native learner.
wrapper_specific = {
'importance_type', 'kwargs', 'missing', 'n_estimators', 'use_label_encoder'}
'importance_type', 'kwargs', 'missing', 'n_estimators', 'use_label_encoder',
"enable_categorical"
}
filtered = dict()
for k, v in params.items():
if k not in wrapper_specific and not callable(v):
@ -735,6 +750,7 @@ class XGBModel(XGBModelBase):
eval_group=None,
eval_qid=None,
create_dmatrix=lambda **kwargs: DMatrix(nthread=self.n_jobs, **kwargs),
enable_categorical=self.enable_categorical,
)
params = self.get_xgb_params()
@ -1202,6 +1218,7 @@ class XGBClassifier(XGBModel, XGBClassifierBase):
eval_group=None,
eval_qid=None,
create_dmatrix=lambda **kwargs: DMatrix(nthread=self.n_jobs, **kwargs),
enable_categorical=self.enable_categorical,
label_transform=label_transform,
)
@ -1628,6 +1645,7 @@ class XGBRanker(XGBModel, XGBRankerMixIn):
eval_group=eval_group,
eval_qid=eval_qid,
create_dmatrix=lambda **kwargs: DMatrix(nthread=self.n_jobs, **kwargs),
enable_categorical=self.enable_categorical,
)
evals_result: TrainingCallback.EvalsLog = {}

View File

@ -1,7 +1,10 @@
import json
import xgboost as xgb
import pytest
import tempfile
import sys
import numpy as np
import os
sys.path.append("tests/python")
import testing as tm # noqa
@ -38,3 +41,36 @@ def test_boost_from_prediction_gpu_hist():
def test_num_parallel_tree():
twskl.run_boston_housing_rf_regression("gpu_hist")
@pytest.mark.skipif(**tm.no_pandas())
@pytest.mark.skipif(**tm.no_sklearn())
def test_categorical():
import pandas as pd
from sklearn.datasets import load_svmlight_file
data_dir = os.path.join(tm.PROJECT_ROOT, "demo", "data")
X, y = load_svmlight_file(os.path.join(data_dir, "agaricus.txt.train"))
clf = xgb.XGBClassifier(
tree_method="gpu_hist",
use_label_encoder=False,
enable_categorical=True,
predictor="gpu_predictor",
n_estimators=10,
)
X = pd.DataFrame(X.todense()).astype("category")
clf.fit(X, y)
with tempfile.TemporaryDirectory() as tempdir:
model = os.path.join(tempdir, "categorial.json")
clf.save_model(model)
with open(model) as fd:
categorical = json.load(fd)
categories_sizes = np.array(
categorical["learner"]["gradient_booster"]["model"]["trees"][0][
"categories_sizes"
]
)
assert categories_sizes.shape[0] != 0
np.testing.assert_allclose(categories_sizes, 1)