Fix inplace predict missing value. (#6787)

This commit is contained in:
Jiaming Yuan 2021-03-27 05:36:10 +08:00 committed by GitHub
parent 5c87c2bba8
commit a59c7323b4
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 97 additions and 33 deletions

View File

@ -255,7 +255,7 @@ XGB_DLL int XGDMatrixCreateFromCSR(char const *indptr,
data::CSRArrayAdapter adapter(StringView{indptr}, StringView{indices},
StringView{data}, ncol);
auto config = Json::Load(StringView{c_json_config});
float missing = get<Number const>(config["missing"]);
float missing = GetMissing(config);
auto nthread = get<Integer const>(config["nthread"]);
*out = new std::shared_ptr<DMatrix>(DMatrix::Create(&adapter, missing, nthread));
API_END();
@ -683,8 +683,8 @@ void InplacePredictImpl(std::shared_ptr<T> x, std::shared_ptr<DMatrix> p_m,
HostDeviceVector<float>* p_predt { nullptr };
auto type = PredictionType(get<Integer const>(config["type"]));
learner->InplacePredict(x, p_m, type, get<Number const>(config["missing"]),
&p_predt,
float missing = GetMissing(config);
learner->InplacePredict(x, p_m, type, missing, &p_predt,
get<Integer const>(config["iteration_begin"]),
get<Integer const>(config["iteration_end"]));
CHECK(p_predt);

View File

@ -48,8 +48,9 @@ int InplacePreidctCuda(BoosterHandle handle, char const *c_json_strs,
auto x = std::make_shared<T>(json_str);
HostDeviceVector<float> *p_predt{nullptr};
auto type = PredictionType(get<Integer const>(config["type"]));
learner->InplacePredict(x, p_m, type, get<Number const>(config["missing"]),
&p_predt,
float missing = GetMissing(config);
learner->InplacePredict(x, p_m, type, missing, &p_predt,
get<Integer const>(config["iteration_begin"]),
get<Integer const>(config["iteration_end"]));
CHECK(p_predt);

View File

@ -11,6 +11,9 @@
#include "xgboost/logging.h"
#include "xgboost/json.h"
#include "xgboost/learner.h"
#include "xgboost/c_api.h"
#include "c_api_error.h"
namespace xgboost {
/* \brief Determine the output shape of prediction.
@ -141,5 +144,19 @@ inline uint32_t GetIterationFromTreeLimit(uint32_t ntree_limit, Learner *learner
}
return ntree_limit;
}
inline float GetMissing(Json const &config) {
float missing;
auto const& j_missing = config["missing"];
if (IsA<Number const>(j_missing)) {
missing = get<Number const>(j_missing);
} else if (IsA<Integer const>(j_missing)) {
missing = get<Integer const>(j_missing);
} else {
missing = nan("");
LOG(FATAL) << "Invalid missing value: " << j_missing;
}
return missing;
}
} // namespace xgboost
#endif // XGBOOST_C_API_C_API_UTILS_H_

View File

@ -16,9 +16,14 @@ namespace xgboost {
namespace data {
struct IsValidFunctor : public thrust::unary_function<Entry, bool> {
explicit IsValidFunctor(float missing) : missing(missing) {}
float missing;
XGBOOST_DEVICE explicit IsValidFunctor(float missing) : missing(missing) {}
__device__ bool operator()(float value) const {
return !(common::CheckNAN(value) || value == missing);
}
__device__ bool operator()(const data::COOTuple& e) const {
if (common::CheckNAN(e.value) || e.value == missing) {
return false;

View File

@ -76,7 +76,7 @@ struct SparsePageLoader {
size_t entry_start;
__device__ SparsePageLoader(SparsePageView data, bool use_shared, bst_feature_t num_features,
bst_row_t num_rows, size_t entry_start)
bst_row_t num_rows, size_t entry_start, float)
: use_shared(use_shared),
data(data),
entry_start(entry_start) {
@ -111,7 +111,7 @@ struct SparsePageLoader {
struct EllpackLoader {
EllpackDeviceAccessor const& matrix;
XGBOOST_DEVICE EllpackLoader(EllpackDeviceAccessor const& m, bool,
bst_feature_t, bst_row_t, size_t)
bst_feature_t, bst_row_t, size_t, float)
: matrix{m} {}
__device__ __forceinline__ float GetElement(size_t ridx, size_t fidx) const {
auto gidx = matrix.GetBinIndex(ridx, fidx);
@ -133,15 +133,17 @@ struct DeviceAdapterLoader {
bst_feature_t columns;
float* smem;
bool use_shared;
data::IsValidFunctor is_valid;
using BatchT = Batch;
XGBOOST_DEV_INLINE DeviceAdapterLoader(Batch const batch, bool use_shared,
bst_feature_t num_features, bst_row_t num_rows,
size_t entry_start) :
size_t entry_start, float missing) :
batch{batch},
columns{num_features},
use_shared{use_shared} {
use_shared{use_shared},
is_valid{missing} {
extern __shared__ float _smem[];
smem = _smem;
if (use_shared) {
@ -153,7 +155,10 @@ struct DeviceAdapterLoader {
auto beg = global_idx * columns;
auto end = (global_idx + 1) * columns;
for (size_t i = beg; i < end; ++i) {
smem[threadIdx.x * num_features + (i - beg)] = batch.GetElement(i).value;
auto value = batch.GetElement(i).value;
if (is_valid(value)) {
smem[threadIdx.x * num_features + (i - beg)] = value;
}
}
}
}
@ -164,7 +169,12 @@ struct DeviceAdapterLoader {
if (use_shared) {
return smem[threadIdx.x * columns + fidx];
}
return batch.GetElement(ridx * columns + fidx).value;
auto value = batch.GetElement(ridx * columns + fidx).value;
if (is_valid(value)) {
return value;
} else {
return nan("");
}
}
};
@ -209,7 +219,7 @@ __device__ bst_node_t GetLeafIndex(bst_row_t ridx, const RegTree::Node* tree,
while (!n.IsLeaf()) {
float fvalue = loader.GetElement(ridx, n.SplitIndex());
// Missing value
if (isnan(fvalue)) {
if (common::CheckNAN(fvalue)) {
nidx = n.DefaultChild();
n = tree[nidx];
} else {
@ -231,12 +241,13 @@ __global__ void PredictLeafKernel(Data data,
common::Span<float> d_out_predictions,
common::Span<size_t const> d_tree_segments,
size_t tree_begin, size_t tree_end, size_t num_features,
size_t num_rows, size_t entry_start, bool use_shared) {
size_t num_rows, size_t entry_start, bool use_shared,
float missing) {
bst_row_t ridx = blockDim.x * blockIdx.x + threadIdx.x;
if (ridx >= num_rows) {
return;
}
Loader loader(data, use_shared, num_features, num_rows, entry_start);
Loader loader(data, use_shared, num_features, num_rows, entry_start, missing);
for (int tree_idx = tree_begin; tree_idx < tree_end; ++tree_idx) {
const RegTree::Node* d_tree = &d_nodes[d_tree_segments[tree_idx - tree_begin]];
auto leaf = GetLeafIndex(ridx, d_tree, loader);
@ -255,9 +266,9 @@ PredictKernel(Data data, common::Span<const RegTree::Node> d_nodes,
common::Span<RegTree::Segment const> d_cat_node_segments,
common::Span<uint32_t const> d_categories, size_t tree_begin,
size_t tree_end, size_t num_features, size_t num_rows,
size_t entry_start, bool use_shared, int num_group) {
size_t entry_start, bool use_shared, int num_group, float missing) {
bst_uint global_idx = blockDim.x * blockIdx.x + threadIdx.x;
Loader loader(data, use_shared, num_features, num_rows, entry_start);
Loader loader(data, use_shared, num_features, num_rows, entry_start, missing);
if (global_idx >= num_rows) return;
if (num_group == 1) {
float sum = 0;
@ -527,7 +538,7 @@ class GPUPredictor : public xgboost::Predictor {
model.categories_tree_segments.ConstDeviceSpan(),
model.categories_node_segments.ConstDeviceSpan(),
model.categories.ConstDeviceSpan(), model.tree_beg_, model.tree_end_,
num_features, num_rows, entry_start, use_shared, model.num_group);
num_features, num_rows, entry_start, use_shared, model.num_group, nan(""));
}
void PredictInternal(EllpackDeviceAccessor const& batch,
DeviceModel const& model,
@ -549,7 +560,7 @@ class GPUPredictor : public xgboost::Predictor {
model.categories_node_segments.ConstDeviceSpan(),
model.categories.ConstDeviceSpan(), model.tree_beg_, model.tree_end_,
batch.NumFeatures(), num_rows, entry_start, use_shared,
model.num_group);
model.num_group, nan(""));
}
void DevicePredictInternal(DMatrix* dmat, HostDeviceVector<float>* out_preds,
@ -607,7 +618,7 @@ class GPUPredictor : public xgboost::Predictor {
template <typename Adapter, typename Loader>
void DispatchedInplacePredict(dmlc::any const &x, std::shared_ptr<DMatrix> p_m,
const gbm::GBTreeModel &model, float,
const gbm::GBTreeModel &model, float missing,
PredictionCacheEntry *out_preds,
uint32_t tree_begin, uint32_t tree_end) const {
uint32_t const output_groups = model.learner_model_param->num_output_group;
@ -648,7 +659,7 @@ class GPUPredictor : public xgboost::Predictor {
d_model.categories_tree_segments.ConstDeviceSpan(),
d_model.categories_node_segments.ConstDeviceSpan(),
d_model.categories.ConstDeviceSpan(), tree_begin, tree_end, m->NumColumns(),
m->NumRows(), entry_start, use_shared, output_groups);
m->NumRows(), entry_start, use_shared, output_groups, missing);
}
bool InplacePredict(dmlc::any const &x, std::shared_ptr<DMatrix> p_m,
@ -836,7 +847,7 @@ class GPUPredictor : public xgboost::Predictor {
predictions->DeviceSpan().subspan(batch_offset),
d_model.tree_segments.ConstDeviceSpan(),
d_model.tree_beg_, d_model.tree_end_, num_features, num_rows,
entry_start, use_shared);
entry_start, use_shared, nan(""));
batch_offset += batch.Size();
}
} else {
@ -852,7 +863,7 @@ class GPUPredictor : public xgboost::Predictor {
predictions->DeviceSpan().subspan(batch_offset),
d_model.tree_segments.ConstDeviceSpan(),
d_model.tree_beg_, d_model.tree_end_, num_features, num_rows,
entry_start, use_shared);
entry_start, use_shared, nan(""));
batch_offset += batch.Size();
}
}

View File

@ -374,6 +374,11 @@ TEST(Json, AssigningNumber) {
value = 15; // NOLINT
ASSERT_EQ(get<Number>(json), 4);
}
{
Json value {Number(std::numeric_limits<float>::quiet_NaN())};
ASSERT_TRUE(IsA<Number>(value));
}
}
TEST(Json, AssigningString) {

View File

@ -154,17 +154,22 @@ class TestGPUPredict:
cp.cuda.runtime.setDevice(0)
rows = 1000
cols = 10
missing = 11 # set to integer for testing
cp_rng = cp.random.RandomState(1994)
cp.random.set_random_state(cp_rng)
X = cp.random.randn(rows, cols)
missing_idx = [i for i in range(0, cols, 4)]
X[:, missing_idx] = missing # set to be missing
y = cp.random.randn(rows)
dtrain = xgb.DMatrix(X, y)
booster = xgb.train({'tree_method': 'gpu_hist'},
dtrain, num_boost_round=10)
test = xgb.DMatrix(X[:10, ...])
predt_from_array = booster.inplace_predict(X[:10, ...])
booster = xgb.train({'tree_method': 'gpu_hist'}, dtrain, num_boost_round=10)
test = xgb.DMatrix(X[:10, ...], missing=missing)
predt_from_array = booster.inplace_predict(X[:10, ...], missing=missing)
predt_from_dmatrix = booster.predict(test)
cp.testing.assert_allclose(predt_from_array, predt_from_dmatrix)
@ -185,6 +190,20 @@ class TestGPUPredict:
base_margin = cp_rng.randn(rows)
self.run_inplace_base_margin(booster, dtrain, X, base_margin)
# Create a wide dataset
X = cp_rng.randn(100, 10000)
y = cp_rng.randn(100)
missing_idx = [i for i in range(0, X.shape[1], 16)]
X[:, missing_idx] = missing
reg = xgb.XGBRegressor(tree_method="gpu_hist", n_estimators=8, missing=missing)
reg.fit(X, y)
gpu_predt = reg.predict(X)
reg.set_params(predictor="cpu_predictor")
cpu_predt = reg.predict(X)
np.testing.assert_allclose(gpu_predt, cpu_predt, atol=1e-6)
@pytest.mark.skipif(**tm.no_cudf())
def test_inplace_predict_cudf(self):
import cupy as cp

View File

@ -103,31 +103,37 @@ class TestInplacePredict:
'''Tests for running inplace prediction'''
@classmethod
def setup_class(cls):
cls.rows = 100
cls.rows = 1000
cls.cols = 10
cls.missing = 11 # set to integer for testing
cls.rng = np.random.RandomState(1994)
cls.X = cls.rng.randn(cls.rows, cls.cols)
missing_idx = [i for i in range(0, cls.cols, 4)]
cls.X[:, missing_idx] = cls.missing # set to be missing
cls.y = cls.rng.randn(cls.rows)
dtrain = xgb.DMatrix(cls.X, cls.y)
cls.test = xgb.DMatrix(cls.X[:10, ...], missing=cls.missing)
cls.booster = xgb.train({'tree_method': 'hist'}, dtrain, num_boost_round=10)
cls.test = xgb.DMatrix(cls.X[:10, ...])
def test_predict(self):
booster = self.booster
X = self.X
test = self.test
predt_from_array = booster.inplace_predict(X[:10, ...])
predt_from_array = booster.inplace_predict(X[:10, ...], missing=self.missing)
predt_from_dmatrix = booster.predict(test)
np.testing.assert_allclose(predt_from_dmatrix, predt_from_array)
predt_from_array = booster.inplace_predict(X[:10, ...], iteration_range=(0, 4))
predt_from_array = booster.inplace_predict(
X[:10, ...], iteration_range=(0, 4), missing=self.missing
)
predt_from_dmatrix = booster.predict(test, ntree_limit=4)
np.testing.assert_allclose(predt_from_dmatrix, predt_from_array)