This PR adds optional support for loading nccl with `dlopen` as an alternative of compile time linking. This is to address the size bloat issue with the PyPI binary release.
- Add CMake option to load `nccl` at runtime.
- Add an NCCL stub.
After this, `nccl` will be fetched from PyPI when using pip to install XGBoost, either by a user or by `pyproject.toml`. Others who want to link the nccl at compile time can continue to do so without any change.
At the moment, this is Linux only since we only support MNMG on Linux.
* Fix round-trip serialization with UTF-8 paths
* Add compiler version check
* Add comment to C API functions
* Add Python tests
* [CI] Updatre MacOS deployment target
* Use std::filesystem instead of dmlc::TemporaryDirectory
* Define `best_iteration` only if early stopping is used.
This is the behavior specified by the document but not honored in the actual code.
- Don't set the attributes if there's no early stopping.
- Clean up the code for callbacks, and replace assertions with proper exceptions.
- Assign the attributes when early stopping `save_best` is used.
- Turn the attributes into Python properties.
---------
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
- Rewrite GPU demos. notebook is converted to script to avoid committing additional png plots.
- Add GPU demos into the sphinx gallery.
- Add RMM demos into the sphinx gallery.
- Test for firing threads with different device ordinals.
* Handle the new `device` parameter in dask and demos.
- Check no ordinal is specified in the dask interface.
- Update demos.
- Update dask doc.
- Update the condition for QDM.
- A `DeviceOrd` struct is implemented to indicate the device. It will eventually replace the `gpu_id` parameter.
- The `predictor` parameter is removed.
- Fallback to `DMatrix` when `inplace_predict` is not available.
- The heuristic for choosing a predictor is only used during training.
- Rework the precision metric for both CPU and GPU.
- Mention it in the document.
- Cleanup old support code for GPU ranking metric.
- Deterministic GPU implementation.
* Drop support for classification.
* type.
* use batch shape.
* lint.
* cpu build.
* cpu build.
* lint.
* Tests.
* Fix.
* Cleanup error message.
* [CI] Update images that are not related to the binary release.
- Update clang-tidy, prefer tools from the Ubuntu repository.
- Update GPU image to 22.04.
- Small cleanup to the tidy script.
- Remove gpu_jvm, which seems to be unused.
* Create pyproject.toml
* Implement a custom build backend (see below) in packager directory. Build logic from setup.py has been refactored and migrated into the new backend.
* Tested: pip wheel . (build wheel), python -m build --sdist . (source distribution)
* Implement multi-target for hist.
- Add new hist tree builder.
- Move data fetchers for tests.
- Dispatch function calls in gbm base on the tree type.
* Update to C++17
* Turn off unity build
* Update CMake to 3.18
* Use MSVC 2022 + CUDA 11.8
* Re-create stack for worker images
* Allocate more disk space for Windows
* Tempiorarily disable clang-tidy
* RAPIDS now requires Python 3.10+
* Unpin cuda-python
* Use latest NCCL
* Use Ubuntu 20.04 in RMM image
* Mark failing mgpu test as xfail