[R] [CI] enforce lintr::function_left_parentheses_linter check (#9631)
This commit is contained in:
parent
4d7a187cb0
commit
799f8485e2
@ -21,13 +21,13 @@ xgb.Booster.handle <- function(params, cachelist, modelfile, handle) {
|
||||
## A memory buffer
|
||||
bst <- xgb.unserialize(modelfile, handle)
|
||||
xgb.parameters(bst) <- params
|
||||
return (bst)
|
||||
return(bst)
|
||||
} else if (inherits(modelfile, "xgb.Booster")) {
|
||||
## A booster object
|
||||
bst <- xgb.Booster.complete(modelfile, saveraw = TRUE)
|
||||
bst <- xgb.unserialize(bst$raw)
|
||||
xgb.parameters(bst) <- params
|
||||
return (bst)
|
||||
return(bst)
|
||||
} else {
|
||||
stop("modelfile must be either character filename, or raw booster dump, or xgb.Booster object")
|
||||
}
|
||||
@ -382,7 +382,7 @@ predict.xgb.Booster <- function(object, newdata, missing = NA, outputmargin = FA
|
||||
cval[0] <- val
|
||||
return(cval)
|
||||
}
|
||||
return (val)
|
||||
return(val)
|
||||
}
|
||||
|
||||
## We set strict_shape to TRUE then drop the dimensions conditionally
|
||||
|
||||
@ -117,7 +117,7 @@ xgb.get.DMatrix <- function(data, label, missing, weight, nthread) {
|
||||
stop("xgboost: invalid input data")
|
||||
}
|
||||
}
|
||||
return (dtrain)
|
||||
return(dtrain)
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -18,6 +18,6 @@ xgb.load.raw <- function(buffer, as_booster = FALSE) {
|
||||
booster <- xgb.Booster.complete(booster, saveraw = TRUE)
|
||||
return(booster)
|
||||
} else {
|
||||
return (handle)
|
||||
return(handle)
|
||||
}
|
||||
}
|
||||
|
||||
@ -37,5 +37,5 @@ xgb.unserialize <- function(buffer, handle = NULL) {
|
||||
}
|
||||
})
|
||||
class(handle) <- "xgb.Booster.handle"
|
||||
return (handle)
|
||||
return(handle)
|
||||
}
|
||||
|
||||
@ -24,7 +24,7 @@ xgboost <- function(data = NULL, label = NULL, missing = NA, weight = NULL,
|
||||
early_stopping_rounds = early_stopping_rounds, maximize = maximize,
|
||||
save_period = save_period, save_name = save_name,
|
||||
xgb_model = xgb_model, callbacks = callbacks, ...)
|
||||
return (bst)
|
||||
return(bst)
|
||||
}
|
||||
|
||||
#' Training part from Mushroom Data Set
|
||||
|
||||
@ -25,7 +25,7 @@ xgb.cv(param, dtrain, nrounds, nfold = 5,
|
||||
# you can also do cross validation with customized loss function
|
||||
# See custom_objective.R
|
||||
##
|
||||
print ('running cross validation, with customized loss function')
|
||||
print('running cross validation, with customized loss function')
|
||||
|
||||
logregobj <- function(preds, dtrain) {
|
||||
labels <- getinfo(dtrain, "label")
|
||||
|
||||
@ -35,7 +35,7 @@ evalerror <- function(preds, dtrain) {
|
||||
|
||||
param <- list(max_depth = 2, eta = 1, nthread = 2, verbosity = 0,
|
||||
objective = logregobj, eval_metric = evalerror)
|
||||
print ('start training with user customized objective')
|
||||
print('start training with user customized objective')
|
||||
# training with customized objective, we can also do step by step training
|
||||
# simply look at xgboost.py's implementation of train
|
||||
bst <- xgb.train(param, dtrain, num_round, watchlist)
|
||||
@ -59,7 +59,7 @@ logregobjattr <- function(preds, dtrain) {
|
||||
}
|
||||
param <- list(max_depth = 2, eta = 1, nthread = 2, verbosity = 0,
|
||||
objective = logregobjattr, eval_metric = evalerror)
|
||||
print ('start training with user customized objective, with additional attributes in DMatrix')
|
||||
print('start training with user customized objective, with additional attributes in DMatrix')
|
||||
# training with customized objective, we can also do step by step training
|
||||
# simply look at xgboost.py's implementation of train
|
||||
bst <- xgb.train(param, dtrain, num_round, watchlist)
|
||||
|
||||
@ -30,7 +30,7 @@ evalerror <- function(preds, dtrain) {
|
||||
err <- as.numeric(sum(labels != (preds > 0))) / length(labels)
|
||||
return(list(metric = "error", value = err))
|
||||
}
|
||||
print ('start training with early Stopping setting')
|
||||
print('start training with early Stopping setting')
|
||||
|
||||
bst <- xgb.train(param, dtrain, num_round, watchlist,
|
||||
objective = logregobj, eval_metric = evalerror, maximize = FALSE,
|
||||
|
||||
@ -19,15 +19,15 @@ w <- runif(metadata$kRows)
|
||||
version <- packageVersion('xgboost')
|
||||
target_dir <- 'models'
|
||||
|
||||
save_booster <- function (booster, model_name) {
|
||||
booster_bin <- function (model_name) {
|
||||
return (file.path(target_dir, paste('xgboost-', version, '.', model_name, '.bin', sep = '')))
|
||||
save_booster <- function(booster, model_name) {
|
||||
booster_bin <- function(model_name) {
|
||||
return(file.path(target_dir, paste('xgboost-', version, '.', model_name, '.bin', sep = '')))
|
||||
}
|
||||
booster_json <- function (model_name) {
|
||||
return (file.path(target_dir, paste('xgboost-', version, '.', model_name, '.json', sep = '')))
|
||||
booster_json <- function(model_name) {
|
||||
return(file.path(target_dir, paste('xgboost-', version, '.', model_name, '.json', sep = '')))
|
||||
}
|
||||
booster_rds <- function (model_name) {
|
||||
return (file.path(target_dir, paste('xgboost-', version, '.', model_name, '.rds', sep = '')))
|
||||
booster_rds <- function(model_name) {
|
||||
return(file.path(target_dir, paste('xgboost-', version, '.', model_name, '.rds', sep = '')))
|
||||
}
|
||||
xgb.save(booster, booster_bin(model_name))
|
||||
saveRDS(booster, booster_rds(model_name))
|
||||
@ -36,7 +36,7 @@ save_booster <- function (booster, model_name) {
|
||||
}
|
||||
}
|
||||
|
||||
generate_regression_model <- function () {
|
||||
generate_regression_model <- function() {
|
||||
print('Regression')
|
||||
y <- rnorm(metadata$kRows)
|
||||
|
||||
@ -47,7 +47,7 @@ generate_regression_model <- function () {
|
||||
save_booster(booster, 'reg')
|
||||
}
|
||||
|
||||
generate_logistic_model <- function () {
|
||||
generate_logistic_model <- function() {
|
||||
print('Binary classification with logistic loss')
|
||||
y <- sample(0:1, size = metadata$kRows, replace = TRUE)
|
||||
stopifnot(max(y) == 1, min(y) == 0)
|
||||
@ -64,7 +64,7 @@ generate_logistic_model <- function () {
|
||||
}
|
||||
}
|
||||
|
||||
generate_classification_model <- function () {
|
||||
generate_classification_model <- function() {
|
||||
print('Multi-class classification')
|
||||
y <- sample(0:(metadata$kClasses - 1), size = metadata$kRows, replace = TRUE)
|
||||
stopifnot(max(y) == metadata$kClasses - 1, min(y) == 0)
|
||||
@ -77,7 +77,7 @@ generate_classification_model <- function () {
|
||||
save_booster(booster, 'cls')
|
||||
}
|
||||
|
||||
generate_ranking_model <- function () {
|
||||
generate_ranking_model <- function() {
|
||||
print('Learning to rank')
|
||||
y <- sample(0:4, size = metadata$kRows, replace = TRUE)
|
||||
stopifnot(max(y) == 4, min(y) == 0)
|
||||
|
||||
@ -9,20 +9,20 @@ metadata <- list(
|
||||
kClasses = 3
|
||||
)
|
||||
|
||||
run_model_param_check <- function (config) {
|
||||
run_model_param_check <- function(config) {
|
||||
testthat::expect_equal(config$learner$learner_model_param$num_feature, '4')
|
||||
testthat::expect_equal(config$learner$learner_train_param$booster, 'gbtree')
|
||||
}
|
||||
|
||||
get_num_tree <- function (booster) {
|
||||
get_num_tree <- function(booster) {
|
||||
dump <- xgb.dump(booster)
|
||||
m <- regexec('booster\\[[0-9]+\\]', dump, perl = TRUE)
|
||||
m <- regmatches(dump, m)
|
||||
num_tree <- Reduce('+', lapply(m, length))
|
||||
return (num_tree)
|
||||
return(num_tree)
|
||||
}
|
||||
|
||||
run_booster_check <- function (booster, name) {
|
||||
run_booster_check <- function(booster, name) {
|
||||
# If given a handle, we need to call xgb.Booster.complete() prior to using xgb.config().
|
||||
if (inherits(booster, "xgb.Booster") && xgboost:::is.null.handle(booster$handle)) {
|
||||
booster <- xgb.Booster.complete(booster)
|
||||
@ -68,7 +68,7 @@ test_that("Models from previous versions of XGBoost can be loaded", {
|
||||
|
||||
pred_data <- xgb.DMatrix(matrix(c(0, 0, 0, 0), nrow = 1, ncol = 4), nthread = 2)
|
||||
|
||||
lapply(list.files(model_dir), function (x) {
|
||||
lapply(list.files(model_dir), function(x) {
|
||||
model_file <- file.path(model_dir, x)
|
||||
m <- regexec("xgboost-([0-9\\.]+)\\.([a-z]+)\\.[a-z]+", model_file, perl = TRUE)
|
||||
m <- regmatches(model_file, m)[[1]]
|
||||
|
||||
@ -47,7 +47,7 @@ test_that('Test ranking with weighted data', {
|
||||
pred <- predict(bst, newdata = dtrain, ntreelimit = i)
|
||||
# is_sorted[i]: is i-th group correctly sorted by the ranking predictor?
|
||||
is_sorted <- lapply(seq(1, 20, by = 5),
|
||||
function (k) {
|
||||
function(k) {
|
||||
ind <- order(-pred[k:(k + 4)])
|
||||
z <- y[ind + (k - 1)]
|
||||
all(diff(z) <= 0) # Check if z is monotone decreasing
|
||||
|
||||
@ -24,8 +24,8 @@ param <- list("objective" = "binary:logitraw",
|
||||
"nthread" = 16)
|
||||
watchlist <- list("train" = xgmat)
|
||||
nrounds <- 120
|
||||
print ("loading data end, start to boost trees")
|
||||
print("loading data end, start to boost trees")
|
||||
bst <- xgb.train(param, xgmat, nrounds, watchlist)
|
||||
# save out model
|
||||
xgb.save(bst, "higgs.model")
|
||||
print ('finish training')
|
||||
print('finish training')
|
||||
|
||||
@ -39,11 +39,11 @@ for (i in seq_along(threads)){
|
||||
"nthread" = thread)
|
||||
watchlist <- list("train" = xgmat)
|
||||
nrounds <- 120
|
||||
print ("loading data end, start to boost trees")
|
||||
print("loading data end, start to boost trees")
|
||||
bst <- xgb.train(param, xgmat, nrounds, watchlist)
|
||||
# save out model
|
||||
xgb.save(bst, "higgs.model")
|
||||
print ('finish training')
|
||||
print('finish training')
|
||||
})
|
||||
}
|
||||
|
||||
|
||||
@ -28,6 +28,7 @@ my_linters <- list(
|
||||
equals_na = lintr::equals_na_linter(),
|
||||
fixed_regex = lintr::fixed_regex_linter(),
|
||||
for_loop_index = lintr::for_loop_index_linter(),
|
||||
function_left_parentheses = lintr::function_left_parentheses_linter(),
|
||||
function_return = lintr::function_return_linter(),
|
||||
infix_spaces_linter = lintr::infix_spaces_linter(),
|
||||
is_numeric = lintr::is_numeric_linter(),
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user