- CUDA implementation.
- Extract the broadcasting logic, we will need the context parameter after revamping the collective implementation.
- Some changes to the event loop for fixing a deadlock in CI.
- Move argsort into algorithms.cuh, add support for cuda stream.
* [coll] Pass context to various functions.
In the future, the `Context` object would be required for collective operations, this PR
passes the context object to some required functions to prepare for swapping out the
implementation.
- Use the `linalg::Matrix` for storing gradients.
- New API for the custom objective.
- Custom objective for multi-class/multi-target is now required to return the correct shape.
- Custom objective for Python can accept arrays with any strides. (row-major, column-major)
- Pass context from booster to DMatrix.
- Use context instead of integer for `n_threads`.
- Check the consistency configuration for `max_bin`.
- Test for all combinations of initialization options.
Added some more tests for the learner and fit_stump, for both column-wise distributed learning and vertical federated learning.
Also moved the `IsRowSplit` and `IsColumnSplit` methods from the `DMatrix` to the `MetaInfo` since in some places we only have access to the `MetaInfo`. Added a new convenience method `IsVerticalFederatedLearning`.
Some refactoring of the testing fixtures.
- Fix prediction range.
- Support prediction cache in mt-hist.
- Support model slicing.
- Make the booster a Python iterable by defining `__iter__`.
- Cleanup removed/deprecated parameters.
- A new field in the output model `iteration_indptr` for pointing to the ranges of trees for each iteration.
* Implement multi-target for hist.
- Add new hist tree builder.
- Move data fetchers for tests.
- Dispatch function calls in gbm base on the tree type.
- Extract the builder from the updater class. We need a new builder for multi-target.
- Extract `UpdateTree`, it can be reused for different builders. Eventually, other tree
updaters can use it as well.
- Pass obj info into tree updater as const pointer.
This way we don't have to initialize the learner model param before configuring gbm, hence
breaking up the dependency of configurations.
- Remove unused parameters. There are still many warnings that are not yet
addressed. Currently, the warnings in dmlc-core dominate the error log.
- Remove `distributed` parameter from metric.
- Fixes some warnings about signed comparison.
Support adaptive tree, a feature supported by both sklearn and lightgbm. The tree leaf is recomputed based on residue of labels and predictions after construction.
For l1 error, the optimal value is the median (50 percentile).
This is marked as experimental support for the following reasons:
- The value is not well defined for distributed training, where we might have empty leaves for local workers. Right now I just use the original leaf value for computing the average with other workers, which might cause significant errors.
- Some follow-ups are required, for exact, pruner, and optimization for quantile function. Also, we need to calculate the initial estimation.
* Generate column matrix from gHistIndex.
* Avoid synchronization with the sparse page once the cache is written.
* Cleanups: Remove member variables/functions, change the update routine to look like approx and gpu_hist.
* Remove pruner.
* Extract partitioner from hist.
* Implement categorical data support by passing the gradient index directly into the partitioner.
* Organize/update document.
* Remove code for negative hessian.
This PR prepares the GHistIndexMatrix to host the column matrix which is used by the hist tree method by accepting sparse_threshold parameter.
Some cleanups are made to ensure the correct batch param is being passed into DMatrix along with some additional tests for correctness of SimpleDMatrix.