xgboost/src/tree/updater_quantile_hist.cc
Jiaming Yuan 3e26107a9c
Rename and extract Context. (#8528)
* Rename `GenericParameter` to `Context`.
* Rename header file to reflect the change.
* Rename all references.
2022-12-07 04:58:54 +08:00

341 lines
12 KiB
C++

/*!
* Copyright 2017-2022 by XGBoost Contributors
* \file updater_quantile_hist.cc
* \brief use quantized feature values to construct a tree
* \author Philip Cho, Tianqi Checn, Egor Smirnov
*/
#include "./updater_quantile_hist.h"
#include <algorithm>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "common_row_partitioner.h"
#include "constraints.h"
#include "hist/histogram.h"
#include "hist/evaluate_splits.h"
#include "param.h"
#include "xgboost/logging.h"
#include "xgboost/tree_updater.h"
namespace xgboost {
namespace tree {
DMLC_REGISTRY_FILE_TAG(updater_quantile_hist);
void QuantileHistMaker::Configure(const Args &args) {
param_.UpdateAllowUnknown(args);
}
void QuantileHistMaker::Update(HostDeviceVector<GradientPair> *gpair, DMatrix *dmat,
common::Span<HostDeviceVector<bst_node_t>> out_position,
const std::vector<RegTree *> &trees) {
// rescale learning rate according to size of trees
float lr = param_.learning_rate;
param_.learning_rate = lr / trees.size();
// build tree
const size_t n_trees = trees.size();
if (!pimpl_) {
pimpl_.reset(new Builder(n_trees, param_, dmat, task_, ctx_));
}
size_t t_idx{0};
for (auto p_tree : trees) {
auto &t_row_position = out_position[t_idx];
this->pimpl_->UpdateTree(gpair, dmat, p_tree, &t_row_position);
++t_idx;
}
param_.learning_rate = lr;
}
bool QuantileHistMaker::UpdatePredictionCache(const DMatrix *data,
linalg::VectorView<float> out_preds) {
if (pimpl_) {
return pimpl_->UpdatePredictionCache(data, out_preds);
} else {
return false;
}
}
CPUExpandEntry QuantileHistMaker::Builder::InitRoot(
DMatrix *p_fmat, RegTree *p_tree, const std::vector<GradientPair> &gpair_h) {
CPUExpandEntry node(RegTree::kRoot, p_tree->GetDepth(0), 0.0f);
size_t page_id = 0;
auto space = ConstructHistSpace(partitioner_, {node});
for (auto const &gidx : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
std::vector<CPUExpandEntry> nodes_to_build{node};
std::vector<CPUExpandEntry> nodes_to_sub;
this->histogram_builder_->BuildHist(page_id, space, gidx, p_tree,
partitioner_.at(page_id).Partitions(), nodes_to_build,
nodes_to_sub, gpair_h);
++page_id;
}
{
GradientPairPrecise grad_stat;
if (p_fmat->IsDense()) {
/**
* Specialized code for dense data: For dense data (with no missing value), the sum
* of gradient histogram is equal to snode[nid]
*/
auto const &gmat = *(p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_)).begin());
std::vector<uint32_t> const &row_ptr = gmat.cut.Ptrs();
CHECK_GE(row_ptr.size(), 2);
uint32_t const ibegin = row_ptr[0];
uint32_t const iend = row_ptr[1];
auto hist = this->histogram_builder_->Histogram()[RegTree::kRoot];
auto begin = hist.data();
for (uint32_t i = ibegin; i < iend; ++i) {
GradientPairPrecise const &et = begin[i];
grad_stat.Add(et.GetGrad(), et.GetHess());
}
} else {
for (auto const &grad : gpair_h) {
grad_stat.Add(grad.GetGrad(), grad.GetHess());
}
collective::Allreduce<collective::Operation::kSum>(reinterpret_cast<double *>(&grad_stat), 2);
}
auto weight = evaluator_->InitRoot(GradStats{grad_stat});
p_tree->Stat(RegTree::kRoot).sum_hess = grad_stat.GetHess();
p_tree->Stat(RegTree::kRoot).base_weight = weight;
(*p_tree)[RegTree::kRoot].SetLeaf(param_.learning_rate * weight);
std::vector<CPUExpandEntry> entries{node};
monitor_->Start("EvaluateSplits");
auto ft = p_fmat->Info().feature_types.ConstHostSpan();
for (auto const &gmat : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
evaluator_->EvaluateSplits(histogram_builder_->Histogram(), gmat.cut, ft, *p_tree, &entries);
break;
}
monitor_->Stop("EvaluateSplits");
node = entries.front();
}
return node;
}
void QuantileHistMaker::Builder::BuildHistogram(DMatrix *p_fmat, RegTree *p_tree,
std::vector<CPUExpandEntry> const &valid_candidates,
std::vector<GradientPair> const &gpair) {
std::vector<CPUExpandEntry> nodes_to_build(valid_candidates.size());
std::vector<CPUExpandEntry> nodes_to_sub(valid_candidates.size());
size_t n_idx = 0;
for (auto const &c : valid_candidates) {
auto left_nidx = (*p_tree)[c.nid].LeftChild();
auto right_nidx = (*p_tree)[c.nid].RightChild();
auto fewer_right = c.split.right_sum.GetHess() < c.split.left_sum.GetHess();
auto build_nidx = left_nidx;
auto subtract_nidx = right_nidx;
if (fewer_right) {
std::swap(build_nidx, subtract_nidx);
}
nodes_to_build[n_idx] = CPUExpandEntry{build_nidx, p_tree->GetDepth(build_nidx), {}};
nodes_to_sub[n_idx] = CPUExpandEntry{subtract_nidx, p_tree->GetDepth(subtract_nidx), {}};
n_idx++;
}
size_t page_id{0};
auto space = ConstructHistSpace(partitioner_, nodes_to_build);
for (auto const &gidx : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
histogram_builder_->BuildHist(page_id, space, gidx, p_tree,
partitioner_.at(page_id).Partitions(), nodes_to_build,
nodes_to_sub, gpair);
++page_id;
}
}
void QuantileHistMaker::Builder::LeafPartition(RegTree const &tree,
common::Span<GradientPair const> gpair,
std::vector<bst_node_t> *p_out_position) {
monitor_->Start(__func__);
if (!task_.UpdateTreeLeaf()) {
return;
}
for (auto const &part : partitioner_) {
part.LeafPartition(ctx_, tree, gpair, p_out_position);
}
monitor_->Stop(__func__);
}
void QuantileHistMaker::Builder::ExpandTree(DMatrix *p_fmat, RegTree *p_tree,
const std::vector<GradientPair> &gpair_h,
HostDeviceVector<bst_node_t> *p_out_position) {
monitor_->Start(__func__);
Driver<CPUExpandEntry> driver(param_);
driver.Push(this->InitRoot(p_fmat, p_tree, gpair_h));
auto const &tree = *p_tree;
auto expand_set = driver.Pop();
while (!expand_set.empty()) {
// candidates that can be further splited.
std::vector<CPUExpandEntry> valid_candidates;
// candidaates that can be applied.
std::vector<CPUExpandEntry> applied;
int32_t depth = expand_set.front().depth + 1;
for (auto const& candidate : expand_set) {
evaluator_->ApplyTreeSplit(candidate, p_tree);
applied.push_back(candidate);
if (driver.IsChildValid(candidate)) {
valid_candidates.emplace_back(candidate);
}
}
monitor_->Start("UpdatePosition");
size_t page_id{0};
for (auto const &page : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
partitioner_.at(page_id).UpdatePosition(ctx_, page, applied, p_tree);
++page_id;
}
monitor_->Stop("UpdatePosition");
std::vector<CPUExpandEntry> best_splits;
if (!valid_candidates.empty()) {
this->BuildHistogram(p_fmat, p_tree, valid_candidates, gpair_h);
for (auto const &candidate : valid_candidates) {
int left_child_nidx = tree[candidate.nid].LeftChild();
int right_child_nidx = tree[candidate.nid].RightChild();
CPUExpandEntry l_best{left_child_nidx, depth, 0.0};
CPUExpandEntry r_best{right_child_nidx, depth, 0.0};
best_splits.push_back(l_best);
best_splits.push_back(r_best);
}
auto const &histograms = histogram_builder_->Histogram();
auto ft = p_fmat->Info().feature_types.ConstHostSpan();
for (auto const &gmat : p_fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
evaluator_->EvaluateSplits(histograms, gmat.cut, ft, *p_tree, &best_splits);
break;
}
}
driver.Push(best_splits.begin(), best_splits.end());
expand_set = driver.Pop();
}
auto &h_out_position = p_out_position->HostVector();
this->LeafPartition(tree, gpair_h, &h_out_position);
monitor_->Stop(__func__);
}
void QuantileHistMaker::Builder::UpdateTree(HostDeviceVector<GradientPair> *gpair, DMatrix *p_fmat,
RegTree *p_tree,
HostDeviceVector<bst_node_t> *p_out_position) {
monitor_->Start(__func__);
std::vector<GradientPair> *gpair_ptr = &(gpair->HostVector());
// in case 'num_parallel_trees != 1' no posibility to change initial gpair
if (GetNumberOfTrees() != 1) {
gpair_local_.resize(gpair_ptr->size());
gpair_local_ = *gpair_ptr;
gpair_ptr = &gpair_local_;
}
this->InitData(p_fmat, *p_tree, gpair_ptr);
ExpandTree(p_fmat, p_tree, *gpair_ptr, p_out_position);
monitor_->Stop(__func__);
}
bool QuantileHistMaker::Builder::UpdatePredictionCache(DMatrix const *data,
linalg::VectorView<float> out_preds) const {
// p_last_fmat_ is a valid pointer as long as UpdatePredictionCache() is called in
// conjunction with Update().
if (!p_last_fmat_ || !p_last_tree_ || data != p_last_fmat_) {
return false;
}
monitor_->Start(__func__);
CHECK_EQ(out_preds.Size(), data->Info().num_row_);
UpdatePredictionCacheImpl(ctx_, p_last_tree_, partitioner_, out_preds);
monitor_->Stop(__func__);
return true;
}
void QuantileHistMaker::Builder::InitSampling(const DMatrix &fmat,
std::vector<GradientPair> *gpair) {
monitor_->Start(__func__);
const auto &info = fmat.Info();
auto& rnd = common::GlobalRandom();
std::vector<GradientPair>& gpair_ref = *gpair;
#if XGBOOST_CUSTOMIZE_GLOBAL_PRNG
std::bernoulli_distribution coin_flip(param_.subsample);
for (size_t i = 0; i < info.num_row_; ++i) {
if (!(gpair_ref[i].GetHess() >= 0.0f && coin_flip(rnd)) || gpair_ref[i].GetGrad() == 0.0f) {
gpair_ref[i] = GradientPair(0);
}
}
#else
uint64_t initial_seed = rnd();
auto n_threads = static_cast<size_t>(ctx_->Threads());
const size_t discard_size = info.num_row_ / n_threads;
std::bernoulli_distribution coin_flip(param_.subsample);
dmlc::OMPException exc;
#pragma omp parallel num_threads(n_threads)
{
exc.Run([&]() {
const size_t tid = omp_get_thread_num();
const size_t ibegin = tid * discard_size;
const size_t iend = (tid == (n_threads - 1)) ? info.num_row_ : ibegin + discard_size;
RandomReplace::MakeIf([&](size_t i, RandomReplace::EngineT& eng) {
return !(gpair_ref[i].GetHess() >= 0.0f && coin_flip(eng));
}, GradientPair(0), initial_seed, ibegin, iend, &gpair_ref);
});
}
exc.Rethrow();
#endif // XGBOOST_CUSTOMIZE_GLOBAL_PRNG
monitor_->Stop(__func__);
}
size_t QuantileHistMaker::Builder::GetNumberOfTrees() { return n_trees_; }
void QuantileHistMaker::Builder::InitData(DMatrix *fmat, const RegTree &tree,
std::vector<GradientPair> *gpair) {
monitor_->Start(__func__);
const auto& info = fmat->Info();
{
size_t page_id{0};
int32_t n_total_bins{0};
partitioner_.clear();
for (auto const &page : fmat->GetBatches<GHistIndexMatrix>(HistBatch(param_))) {
if (n_total_bins == 0) {
n_total_bins = page.cut.TotalBins();
} else {
CHECK_EQ(n_total_bins, page.cut.TotalBins());
}
partitioner_.emplace_back(this->ctx_, page.Size(), page.base_rowid);
++page_id;
}
histogram_builder_->Reset(n_total_bins, HistBatch(param_), ctx_->Threads(), page_id,
collective::IsDistributed());
if (param_.subsample < 1.0f) {
CHECK_EQ(param_.sampling_method, TrainParam::kUniform)
<< "Only uniform sampling is supported, "
<< "gradient-based sampling is only support by GPU Hist.";
InitSampling(*fmat, gpair);
}
}
// store a pointer to the tree
p_last_tree_ = &tree;
evaluator_.reset(
new HistEvaluator<CPUExpandEntry>{param_, info, this->ctx_->Threads(), column_sampler_});
monitor_->Stop(__func__);
}
XGBOOST_REGISTER_TREE_UPDATER(QuantileHistMaker, "grow_quantile_histmaker")
.describe("Grow tree using quantized histogram.")
.set_body([](Context const *ctx, ObjInfo task) { return new QuantileHistMaker(ctx, task); });
} // namespace tree
} // namespace xgboost