[breaking] Drop single precision histogram (#7892)

Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
This commit is contained in:
Jiaming Yuan 2022-05-13 19:54:55 +08:00 committed by GitHub
parent c8f9d4b6e6
commit 1b6538b4e5
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
18 changed files with 171 additions and 407 deletions

View File

@ -1,5 +1,5 @@
/*!
* Copyright 2015-2019 by Contributors.
* Copyright 2015-2022 by Contributors.
* \brief XGBoost Amalgamation.
* This offers an alternative way to compile the entire library from this single file.
*
@ -50,7 +50,6 @@
// trees
#include "../src/tree/constraints.cc"
#include "../src/tree/hist/param.cc"
#include "../src/tree/param.cc"
#include "../src/tree/tree_model.cc"
#include "../src/tree/tree_updater.cc"

View File

@ -34,34 +34,6 @@ Supported parameters
.. |tick| unicode:: U+2714
.. |cross| unicode:: U+2718
+--------------------------------+--------------+
| parameter | ``gpu_hist`` |
+================================+==============+
| ``subsample`` | |tick| |
+--------------------------------+--------------+
| ``sampling_method`` | |tick| |
+--------------------------------+--------------+
| ``colsample_bytree`` | |tick| |
+--------------------------------+--------------+
| ``colsample_bylevel`` | |tick| |
+--------------------------------+--------------+
| ``max_bin`` | |tick| |
+--------------------------------+--------------+
| ``gamma`` | |tick| |
+--------------------------------+--------------+
| ``gpu_id`` | |tick| |
+--------------------------------+--------------+
| ``predictor`` | |tick| |
+--------------------------------+--------------+
| ``grow_policy`` | |tick| |
+--------------------------------+--------------+
| ``monotone_constraints`` | |tick| |
+--------------------------------+--------------+
| ``interaction_constraints`` | |tick| |
+--------------------------------+--------------+
| ``single_precision_histogram`` | |cross| |
+--------------------------------+--------------+
GPU accelerated prediction is enabled by default for the above mentioned ``tree_method`` parameters but can be switched to CPU prediction by setting ``predictor`` to ``cpu_predictor``. This could be useful if you want to conserve GPU memory. Likewise when using CPU algorithms, GPU accelerated prediction can be enabled by setting ``predictor`` to ``gpu_predictor``.
The device ordinal (which GPU to use if you have many of them) can be selected using the

View File

@ -238,10 +238,6 @@ Parameters for Tree Booster
Additional parameters for ``hist``, ``gpu_hist`` and ``approx`` tree method
===========================================================================
* ``single_precision_histogram``, [default= ``false``]
- Use single precision to build histograms instead of double precision. Currently disabled for ``gpu_hist``.
* ``max_cat_to_onehot``
.. versionadded:: 1.6

View File

@ -171,8 +171,6 @@ Will print out something similar to (not actual output as it's too long for demo
"grow_gpu_hist": {
"gpu_hist_train_param": {
"debug_synchronize": "0",
"gpu_batch_nrows": "0",
"single_precision_histogram": "0"
},
"train_param": {
"alpha": "0",

View File

@ -36,78 +36,51 @@ HistogramCuts::HistogramCuts() {
/*!
* \brief fill a histogram by zeros in range [begin, end)
*/
template<typename GradientSumT>
void InitilizeHistByZeroes(GHistRow<GradientSumT> hist, size_t begin, size_t end) {
void InitilizeHistByZeroes(GHistRow hist, size_t begin, size_t end) {
#if defined(XGBOOST_STRICT_R_MODE) && XGBOOST_STRICT_R_MODE == 1
std::fill(hist.begin() + begin, hist.begin() + end,
xgboost::detail::GradientPairInternal<GradientSumT>());
std::fill(hist.begin() + begin, hist.begin() + end, xgboost::GradientPairPrecise());
#else // defined(XGBOOST_STRICT_R_MODE) && XGBOOST_STRICT_R_MODE == 1
memset(hist.data() + begin, '\0', (end-begin)*
sizeof(xgboost::detail::GradientPairInternal<GradientSumT>));
memset(hist.data() + begin, '\0', (end - begin) * sizeof(xgboost::GradientPairPrecise));
#endif // defined(XGBOOST_STRICT_R_MODE) && XGBOOST_STRICT_R_MODE == 1
}
template void InitilizeHistByZeroes(GHistRow<float> hist, size_t begin,
size_t end);
template void InitilizeHistByZeroes(GHistRow<double> hist, size_t begin,
size_t end);
/*!
* \brief Increment hist as dst += add in range [begin, end)
*/
template<typename GradientSumT>
void IncrementHist(GHistRow<GradientSumT> dst, const GHistRow<GradientSumT> add,
size_t begin, size_t end) {
GradientSumT* pdst = reinterpret_cast<GradientSumT*>(dst.data());
const GradientSumT* padd = reinterpret_cast<const GradientSumT*>(add.data());
void IncrementHist(GHistRow dst, const GHistRow add, size_t begin, size_t end) {
double* pdst = reinterpret_cast<double*>(dst.data());
const double *padd = reinterpret_cast<const double *>(add.data());
for (size_t i = 2 * begin; i < 2 * end; ++i) {
pdst[i] += padd[i];
}
}
template void IncrementHist(GHistRow<float> dst, const GHistRow<float> add,
size_t begin, size_t end);
template void IncrementHist(GHistRow<double> dst, const GHistRow<double> add,
size_t begin, size_t end);
/*!
* \brief Copy hist from src to dst in range [begin, end)
*/
template<typename GradientSumT>
void CopyHist(GHistRow<GradientSumT> dst, const GHistRow<GradientSumT> src,
size_t begin, size_t end) {
GradientSumT* pdst = reinterpret_cast<GradientSumT*>(dst.data());
const GradientSumT* psrc = reinterpret_cast<const GradientSumT*>(src.data());
void CopyHist(GHistRow dst, const GHistRow src, size_t begin, size_t end) {
double *pdst = reinterpret_cast<double *>(dst.data());
const double *psrc = reinterpret_cast<const double *>(src.data());
for (size_t i = 2 * begin; i < 2 * end; ++i) {
pdst[i] = psrc[i];
}
}
template void CopyHist(GHistRow<float> dst, const GHistRow<float> src,
size_t begin, size_t end);
template void CopyHist(GHistRow<double> dst, const GHistRow<double> src,
size_t begin, size_t end);
/*!
* \brief Compute Subtraction: dst = src1 - src2 in range [begin, end)
*/
template<typename GradientSumT>
void SubtractionHist(GHistRow<GradientSumT> dst, const GHistRow<GradientSumT> src1,
const GHistRow<GradientSumT> src2,
size_t begin, size_t end) {
GradientSumT* pdst = reinterpret_cast<GradientSumT*>(dst.data());
const GradientSumT* psrc1 = reinterpret_cast<const GradientSumT*>(src1.data());
const GradientSumT* psrc2 = reinterpret_cast<const GradientSumT*>(src2.data());
void SubtractionHist(GHistRow dst, const GHistRow src1, const GHistRow src2, size_t begin,
size_t end) {
double* pdst = reinterpret_cast<double*>(dst.data());
const double* psrc1 = reinterpret_cast<const double*>(src1.data());
const double* psrc2 = reinterpret_cast<const double*>(src2.data());
for (size_t i = 2 * begin; i < 2 * end; ++i) {
pdst[i] = psrc1[i] - psrc2[i];
}
}
template void SubtractionHist(GHistRow<float> dst, const GHistRow<float> src1,
const GHistRow<float> src2,
size_t begin, size_t end);
template void SubtractionHist(GHistRow<double> dst, const GHistRow<double> src1,
const GHistRow<double> src2,
size_t begin, size_t end);
struct Prefetch {
public:
@ -132,11 +105,10 @@ struct Prefetch {
constexpr size_t Prefetch::kNoPrefetchSize;
template <typename FPType, bool do_prefetch, typename BinIdxType,
bool first_page, bool any_missing = true>
template <bool do_prefetch, typename BinIdxType, bool first_page, bool any_missing = true>
void BuildHistKernel(const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix &gmat, GHistRow<FPType> hist) {
const RowSetCollection::Elem row_indices, const GHistIndexMatrix &gmat,
GHistRow hist) {
const size_t size = row_indices.Size();
const size_t *rid = row_indices.begin;
auto const *pgh = reinterpret_cast<const float *>(gpair.data());
@ -154,7 +126,7 @@ void BuildHistKernel(const std::vector<GradientPair> &gpair,
const size_t n_features =
get_row_ptr(row_indices.begin[0] + 1) - get_row_ptr(row_indices.begin[0]);
auto hist_data = reinterpret_cast<FPType *>(hist.data());
auto hist_data = reinterpret_cast<double *>(hist.data());
const uint32_t two{2}; // Each element from 'gpair' and 'hist' contains
// 2 FP values: gradient and hessian.
// So we need to multiply each row-index/bin-index by 2
@ -195,24 +167,21 @@ void BuildHistKernel(const std::vector<GradientPair> &gpair,
}
}
template <typename FPType, bool do_prefetch, bool any_missing>
template <bool do_prefetch, bool any_missing>
void BuildHistDispatch(const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix &gmat, GHistRow<FPType> hist) {
const RowSetCollection::Elem row_indices, const GHistIndexMatrix &gmat,
GHistRow hist) {
auto first_page = gmat.base_rowid == 0;
if (first_page) {
switch (gmat.index.GetBinTypeSize()) {
case kUint8BinsTypeSize:
BuildHistKernel<FPType, do_prefetch, uint8_t, true, any_missing>(
gpair, row_indices, gmat, hist);
BuildHistKernel<do_prefetch, uint8_t, true, any_missing>(gpair, row_indices, gmat, hist);
break;
case kUint16BinsTypeSize:
BuildHistKernel<FPType, do_prefetch, uint16_t, true, any_missing>(
gpair, row_indices, gmat, hist);
BuildHistKernel<do_prefetch, uint16_t, true, any_missing>(gpair, row_indices, gmat, hist);
break;
case kUint32BinsTypeSize:
BuildHistKernel<FPType, do_prefetch, uint32_t, true, any_missing>(
gpair, row_indices, gmat, hist);
BuildHistKernel<do_prefetch, uint32_t, true, any_missing>(gpair, row_indices, gmat, hist);
break;
default:
CHECK(false); // no default behavior
@ -220,16 +189,13 @@ void BuildHistDispatch(const std::vector<GradientPair> &gpair,
} else {
switch (gmat.index.GetBinTypeSize()) {
case kUint8BinsTypeSize:
BuildHistKernel<FPType, do_prefetch, uint8_t, false, any_missing>(
gpair, row_indices, gmat, hist);
BuildHistKernel<do_prefetch, uint8_t, false, any_missing>(gpair, row_indices, gmat, hist);
break;
case kUint16BinsTypeSize:
BuildHistKernel<FPType, do_prefetch, uint16_t, false, any_missing>(
gpair, row_indices, gmat, hist);
BuildHistKernel<do_prefetch, uint16_t, false, any_missing>(gpair, row_indices, gmat, hist);
break;
case kUint32BinsTypeSize:
BuildHistKernel<FPType, do_prefetch, uint32_t, false, any_missing>(
gpair, row_indices, gmat, hist);
BuildHistKernel<do_prefetch, uint32_t, false, any_missing>(gpair, row_indices, gmat, hist);
break;
default:
CHECK(false); // no default behavior
@ -237,12 +203,10 @@ void BuildHistDispatch(const std::vector<GradientPair> &gpair,
}
}
template <typename GradientSumT>
template <bool any_missing>
void GHistBuilder<GradientSumT>::BuildHist(
const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices, const GHistIndexMatrix &gmat,
GHistRowT hist) const {
void GHistBuilder::BuildHist(const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices, const GHistIndexMatrix &gmat,
GHistRow hist) const {
const size_t nrows = row_indices.Size();
const size_t no_prefetch_size = Prefetch::NoPrefetchSize(nrows);
@ -252,7 +216,7 @@ void GHistBuilder<GradientSumT>::BuildHist(
if (contiguousBlock) {
// contiguous memory access, built-in HW prefetching is enough
BuildHistDispatch<GradientSumT, false, any_missing>(gpair, row_indices,
BuildHistDispatch<false, any_missing>(gpair, row_indices,
gmat, hist);
} else {
const RowSetCollection::Elem span1(row_indices.begin,
@ -260,33 +224,18 @@ void GHistBuilder<GradientSumT>::BuildHist(
const RowSetCollection::Elem span2(row_indices.end - no_prefetch_size,
row_indices.end);
BuildHistDispatch<GradientSumT, true, any_missing>(gpair, span1, gmat,
hist);
BuildHistDispatch<true, any_missing>(gpair, span1, gmat, hist);
// no prefetching to avoid loading extra memory
BuildHistDispatch<GradientSumT, false, any_missing>(gpair, span2, gmat,
hist);
BuildHistDispatch<false, any_missing>(gpair, span2, gmat, hist);
}
}
template void
GHistBuilder<float>::BuildHist<true>(const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix &gmat,
GHistRow<float> hist) const;
template void
GHistBuilder<float>::BuildHist<false>(const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix &gmat,
GHistRow<float> hist) const;
template void
GHistBuilder<double>::BuildHist<true>(const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix &gmat,
GHistRow<double> hist) const;
template void
GHistBuilder<double>::BuildHist<false>(const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix &gmat,
GHistRow<double> hist) const;
template void GHistBuilder::BuildHist<true>(const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix &gmat, GHistRow hist) const;
template void GHistBuilder::BuildHist<false>(const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix &gmat, GHistRow hist) const;
} // namespace common
} // namespace xgboost

View File

@ -322,56 +322,44 @@ bst_bin_t XGBOOST_HOST_DEV_INLINE BinarySearchBin(size_t begin, size_t end,
return -1;
}
template<typename GradientSumT>
using GHistRow = Span<xgboost::detail::GradientPairInternal<GradientSumT> >;
using GHistRow = Span<xgboost::GradientPairPrecise>;
/*!
* \brief fill a histogram by zeros
*/
template<typename GradientSumT>
void InitilizeHistByZeroes(GHistRow<GradientSumT> hist, size_t begin, size_t end);
void InitilizeHistByZeroes(GHistRow hist, size_t begin, size_t end);
/*!
* \brief Increment hist as dst += add in range [begin, end)
*/
template<typename GradientSumT>
void IncrementHist(GHistRow<GradientSumT> dst, const GHistRow<GradientSumT> add,
size_t begin, size_t end);
void IncrementHist(GHistRow dst, const GHistRow add, size_t begin, size_t end);
/*!
* \brief Copy hist from src to dst in range [begin, end)
*/
template<typename GradientSumT>
void CopyHist(GHistRow<GradientSumT> dst, const GHistRow<GradientSumT> src,
size_t begin, size_t end);
void CopyHist(GHistRow dst, const GHistRow src, size_t begin, size_t end);
/*!
* \brief Compute Subtraction: dst = src1 - src2 in range [begin, end)
*/
template<typename GradientSumT>
void SubtractionHist(GHistRow<GradientSumT> dst, const GHistRow<GradientSumT> src1,
const GHistRow<GradientSumT> src2,
size_t begin, size_t end);
void SubtractionHist(GHistRow dst, const GHistRow src1, const GHistRow src2, size_t begin,
size_t end);
/*!
* \brief histogram of gradient statistics for multiple nodes
*/
template<typename GradientSumT>
class HistCollection {
public:
using GHistRowT = GHistRow<GradientSumT>;
using GradientPairT = xgboost::detail::GradientPairInternal<GradientSumT>;
// access histogram for i-th node
GHistRowT operator[](bst_uint nid) const {
GHistRow operator[](bst_uint nid) const {
constexpr uint32_t kMax = std::numeric_limits<uint32_t>::max();
const size_t id = row_ptr_.at(nid);
CHECK_NE(id, kMax);
GradientPairT* ptr = nullptr;
GradientPairPrecise* ptr = nullptr;
if (contiguous_allocation_) {
ptr = const_cast<GradientPairT*>(data_[0].data() + nbins_*id);
ptr = const_cast<GradientPairPrecise*>(data_[0].data() + nbins_*id);
} else {
ptr = const_cast<GradientPairT*>(data_[id].data());
ptr = const_cast<GradientPairPrecise*>(data_[id].data());
}
return {ptr, nbins_};
}
@ -431,7 +419,7 @@ class HistCollection {
/*! \brief flag to identify contiguous memory allocation */
bool contiguous_allocation_ = false;
std::vector<std::vector<GradientPairT>> data_;
std::vector<std::vector<GradientPairPrecise>> data_;
/*! \brief row_ptr_[nid] locates bin for histogram of node nid */
std::vector<size_t> row_ptr_;
@ -442,11 +430,8 @@ class HistCollection {
* Supports processing multiple tree-nodes for nested parallelism
* Able to reduce histograms across threads in efficient way
*/
template<typename GradientSumT>
class ParallelGHistBuilder {
public:
using GHistRowT = GHistRow<GradientSumT>;
void Init(size_t nbins) {
if (nbins != nbins_) {
hist_buffer_.Init(nbins);
@ -457,7 +442,7 @@ class ParallelGHistBuilder {
// Add new elements if needed, mark all hists as unused
// targeted_hists - already allocated hists which should contain final results after Reduce() call
void Reset(size_t nthreads, size_t nodes, const BlockedSpace2d& space,
const std::vector<GHistRowT>& targeted_hists) {
const std::vector<GHistRow>& targeted_hists) {
hist_buffer_.Init(nbins_);
tid_nid_to_hist_.clear();
threads_to_nids_map_.clear();
@ -478,7 +463,7 @@ class ParallelGHistBuilder {
}
// Get specified hist, initialize hist by zeros if it wasn't used before
GHistRowT GetInitializedHist(size_t tid, size_t nid) {
GHistRow GetInitializedHist(size_t tid, size_t nid) {
CHECK_LT(nid, nodes_);
CHECK_LT(tid, nthreads_);
@ -486,7 +471,7 @@ class ParallelGHistBuilder {
if (idx >= 0) {
hist_buffer_.AllocateData(idx);
}
GHistRowT hist = idx == -1 ? targeted_hists_[nid] : hist_buffer_[idx];
GHistRow hist = idx == -1 ? targeted_hists_[nid] : hist_buffer_[idx];
if (!hist_was_used_[tid * nodes_ + nid]) {
InitilizeHistByZeroes(hist, 0, hist.size());
@ -501,7 +486,7 @@ class ParallelGHistBuilder {
CHECK_GT(end, begin);
CHECK_LT(nid, nodes_);
GHistRowT dst = targeted_hists_[nid];
GHistRow dst = targeted_hists_[nid];
bool is_updated = false;
for (size_t tid = 0; tid < nthreads_; ++tid) {
@ -509,7 +494,7 @@ class ParallelGHistBuilder {
is_updated = true;
int idx = tid_nid_to_hist_.at({tid, nid});
GHistRowT src = idx == -1 ? targeted_hists_[nid] : hist_buffer_[idx];
GHistRow src = idx == -1 ? targeted_hists_[nid] : hist_buffer_[idx];
if (dst.data() != src.data()) {
IncrementHist(dst, src, begin, end);
@ -595,7 +580,7 @@ class ParallelGHistBuilder {
/*! \brief number of nodes which will be processed in parallel */
size_t nodes_ = 0;
/*! \brief Buffer for additional histograms for Parallel processing */
HistCollection<GradientSumT> hist_buffer_;
HistCollection hist_buffer_;
/*!
* \brief Marks which hists were used, it means that they should be merged.
* Contains only {true or false} values
@ -606,7 +591,7 @@ class ParallelGHistBuilder {
/*! \brief Buffer for additional histograms for Parallel processing */
std::vector<bool> threads_to_nids_map_;
/*! \brief Contains histograms for final results */
std::vector<GHistRowT> targeted_hists_;
std::vector<GHistRow> targeted_hists_;
/*!
* \brief map pair {tid, nid} to index of allocated histogram from hist_buffer_ and targeted_hists_,
* -1 is reserved for targeted_hists_
@ -617,19 +602,15 @@ class ParallelGHistBuilder {
/*!
* \brief builder for histograms of gradient statistics
*/
template<typename GradientSumT>
class GHistBuilder {
public:
using GHistRowT = GHistRow<GradientSumT>;
GHistBuilder() = default;
explicit GHistBuilder(uint32_t nbins): nbins_{nbins} {}
// construct a histogram via histogram aggregation
template <bool any_missing>
void BuildHist(const std::vector<GradientPair> &gpair,
const RowSetCollection::Elem row_indices,
const GHistIndexMatrix &gmat, GHistRowT hist) const;
void BuildHist(const std::vector<GradientPair>& gpair, const RowSetCollection::Elem row_indices,
const GHistIndexMatrix& gmat, GHistRow hist) const;
uint32_t GetNumBins() const {
return nbins_;
}

View File

@ -22,7 +22,8 @@
namespace xgboost {
namespace tree {
template <typename GradientSumT, typename ExpandEntry> class HistEvaluator {
template <typename ExpandEntry>
class HistEvaluator {
private:
struct NodeEntry {
/*! \brief statics for node entry */
@ -57,7 +58,7 @@ template <typename GradientSumT, typename ExpandEntry> class HistEvaluator {
// a non-missing value for the particular feature fid.
template <int d_step, SplitType split_type>
GradStats EnumerateSplit(common::HistogramCuts const &cut, common::Span<size_t const> sorted_idx,
const common::GHistRow<GradientSumT> &hist, bst_feature_t fidx,
const common::GHistRow &hist, bst_feature_t fidx,
bst_node_t nidx,
TreeEvaluator::SplitEvaluator<TrainParam> const &evaluator,
SplitEntry *p_best) const {
@ -197,10 +198,8 @@ template <typename GradientSumT, typename ExpandEntry> class HistEvaluator {
}
public:
void EvaluateSplits(const common::HistCollection<GradientSumT> &hist,
common::HistogramCuts const &cut,
common::Span<FeatureType const> feature_types,
const RegTree &tree,
void EvaluateSplits(const common::HistCollection &hist, common::HistogramCuts const &cut,
common::Span<FeatureType const> feature_types, const RegTree &tree,
std::vector<ExpandEntry> *p_entries) {
auto& entries = *p_entries;
// All nodes are on the same level, so we can store the shared ptr.
@ -377,10 +376,10 @@ template <typename GradientSumT, typename ExpandEntry> class HistEvaluator {
*
* \param p_last_tree The last tree being updated by tree updater
*/
template <typename Partitioner, typename GradientSumT, typename ExpandEntry>
template <typename Partitioner, typename ExpandEntry>
void UpdatePredictionCacheImpl(GenericParameter const *ctx, RegTree const *p_last_tree,
std::vector<Partitioner> const &partitioner,
HistEvaluator<GradientSumT, ExpandEntry> const &hist_evaluator,
HistEvaluator<ExpandEntry> const &hist_evaluator,
TrainParam const &param, linalg::VectorView<float> out_preds) {
CHECK_GT(out_preds.Size(), 0U);

View File

@ -16,17 +16,15 @@
namespace xgboost {
namespace tree {
template <typename GradientSumT, typename ExpandEntry> class HistogramBuilder {
using GradientPairT = xgboost::detail::GradientPairInternal<GradientSumT>;
using GHistRowT = common::GHistRow<GradientSumT>;
template <typename ExpandEntry>
class HistogramBuilder {
/*! \brief culmulative histogram of gradients. */
common::HistCollection<GradientSumT> hist_;
common::HistCollection hist_;
/*! \brief culmulative local parent histogram of gradients. */
common::HistCollection<GradientSumT> hist_local_worker_;
common::GHistBuilder<GradientSumT> builder_;
common::ParallelGHistBuilder<GradientSumT> buffer_;
rabit::Reducer<GradientPairT, GradientPairT::Reduce> reducer_;
common::HistCollection hist_local_worker_;
common::GHistBuilder builder_;
common::ParallelGHistBuilder buffer_;
rabit::Reducer<GradientPairPrecise, GradientPairPrecise::Reduce> reducer_;
BatchParam param_;
int32_t n_threads_{-1};
size_t n_batches_{0};
@ -51,8 +49,10 @@ template <typename GradientSumT, typename ExpandEntry> class HistogramBuilder {
hist_.Init(total_bins);
hist_local_worker_.Init(total_bins);
buffer_.Init(total_bins);
builder_ = common::GHistBuilder<GradientSumT>(total_bins);
builder_ = common::GHistBuilder(total_bins);
is_distributed_ = is_distributed;
// Workaround s390x gcc 7.5.0
auto DMLC_ATTRIBUTE_UNUSED __force_instantiation = &GradientPairPrecise::Reduce;
}
template <bool any_missing>
@ -64,7 +64,7 @@ template <typename GradientSumT, typename ExpandEntry> class HistogramBuilder {
const size_t n_nodes = nodes_for_explicit_hist_build.size();
CHECK_GT(n_nodes, 0);
std::vector<GHistRowT> target_hists(n_nodes);
std::vector<common::GHistRow> target_hists(n_nodes);
for (size_t i = 0; i < n_nodes; ++i) {
const int32_t nid = nodes_for_explicit_hist_build[i].nid;
target_hists[i] = hist_[nid];
@ -243,9 +243,7 @@ template <typename GradientSumT, typename ExpandEntry> class HistogramBuilder {
public:
/* Getters for tests. */
common::HistCollection<GradientSumT> const& Histogram() {
return hist_;
}
common::HistCollection const &Histogram() { return hist_; }
auto& Buffer() { return buffer_; }
private:

View File

@ -1,10 +0,0 @@
/*!
* Copyright 2022 XGBoost contributors
*/
#include "param.h"
namespace xgboost {
namespace tree {
DMLC_REGISTER_PARAMETER(CPUHistMakerTrainParam);
} // namespace tree
} // namespace xgboost

View File

@ -1,23 +0,0 @@
/*!
* Copyright 2021 XGBoost contributors
*/
#ifndef XGBOOST_TREE_HIST_PARAM_H_
#define XGBOOST_TREE_HIST_PARAM_H_
#include "xgboost/parameter.h"
namespace xgboost {
namespace tree {
// training parameters specific to this algorithm
struct CPUHistMakerTrainParam
: public XGBoostParameter<CPUHistMakerTrainParam> {
bool single_precision_histogram;
// declare parameters
DMLC_DECLARE_PARAMETER(CPUHistMakerTrainParam) {
DMLC_DECLARE_FIELD(single_precision_histogram).set_default(false).describe(
"Use single precision to build histograms.");
}
};
} // namespace tree
} // namespace xgboost
#endif // XGBOOST_TREE_HIST_PARAM_H_

View File

@ -15,7 +15,6 @@
#include "driver.h"
#include "hist/evaluate_splits.h"
#include "hist/histogram.h"
#include "hist/param.h"
#include "param.h"
#include "xgboost/base.h"
#include "xgboost/json.h"
@ -38,13 +37,12 @@ auto BatchSpec(TrainParam const &p, common::Span<float> hess) {
}
} // anonymous namespace
template <typename GradientSumT>
class GloablApproxBuilder {
protected:
TrainParam param_;
std::shared_ptr<common::ColumnSampler> col_sampler_;
HistEvaluator<GradientSumT, CPUExpandEntry> evaluator_;
HistogramBuilder<GradientSumT, CPUExpandEntry> histogram_builder_;
HistEvaluator<CPUExpandEntry> evaluator_;
HistogramBuilder<CPUExpandEntry> histogram_builder_;
Context const *ctx_;
ObjInfo const task_;
@ -166,7 +164,7 @@ class GloablApproxBuilder {
}
public:
explicit GloablApproxBuilder(TrainParam param, MetaInfo const &info, GenericParameter const *ctx,
explicit GloablApproxBuilder(TrainParam param, MetaInfo const &info, Context const *ctx,
std::shared_ptr<common::ColumnSampler> column_sampler, ObjInfo task,
common::Monitor *monitor)
: param_{std::move(param)},
@ -256,10 +254,8 @@ class GloablApproxBuilder {
class GlobalApproxUpdater : public TreeUpdater {
TrainParam param_;
common::Monitor monitor_;
CPUHistMakerTrainParam hist_param_;
// specializations for different histogram precision.
std::unique_ptr<GloablApproxBuilder<float>> f32_impl_;
std::unique_ptr<GloablApproxBuilder<double>> f64_impl_;
std::unique_ptr<GloablApproxBuilder> pimpl_;
// pointer to the last DMatrix, used for update prediction cache.
DMatrix *cached_{nullptr};
std::shared_ptr<common::ColumnSampler> column_sampler_ =
@ -272,19 +268,14 @@ class GlobalApproxUpdater : public TreeUpdater {
monitor_.Init(__func__);
}
void Configure(const Args &args) override {
param_.UpdateAllowUnknown(args);
hist_param_.UpdateAllowUnknown(args);
}
void Configure(const Args &args) override { param_.UpdateAllowUnknown(args); }
void LoadConfig(Json const &in) override {
auto const &config = get<Object const>(in);
FromJson(config.at("train_param"), &this->param_);
FromJson(config.at("hist_param"), &this->hist_param_);
}
void SaveConfig(Json *p_out) const override {
auto &out = *p_out;
out["train_param"] = ToJson(param_);
out["hist_param"] = ToJson(hist_param_);
}
void InitData(TrainParam const &param, HostDeviceVector<GradientPair> const *gpair,
@ -316,13 +307,8 @@ class GlobalApproxUpdater : public TreeUpdater {
float lr = param_.learning_rate;
param_.learning_rate = lr / trees.size();
if (hist_param_.single_precision_histogram) {
f32_impl_ = std::make_unique<GloablApproxBuilder<float>>(param_, m->Info(), ctx_,
column_sampler_, task_, &monitor_);
} else {
f64_impl_ = std::make_unique<GloablApproxBuilder<double>>(param_, m->Info(), ctx_,
column_sampler_, task_, &monitor_);
}
pimpl_ = std::make_unique<GloablApproxBuilder>(param_, m->Info(), ctx_, column_sampler_, task_,
&monitor_);
std::vector<GradientPair> h_gpair;
InitData(param_, gpair, &h_gpair);
@ -335,26 +321,17 @@ class GlobalApproxUpdater : public TreeUpdater {
size_t t_idx = 0;
for (auto p_tree : trees) {
if (hist_param_.single_precision_histogram) {
this->f32_impl_->UpdateTree(m, h_gpair, hess, p_tree, &out_position[t_idx]);
} else {
this->f64_impl_->UpdateTree(m, h_gpair, hess, p_tree, &out_position[t_idx]);
}
this->pimpl_->UpdateTree(m, h_gpair, hess, p_tree, &out_position[t_idx]);
++t_idx;
}
param_.learning_rate = lr;
}
bool UpdatePredictionCache(const DMatrix *data, linalg::VectorView<float> out_preds) override {
if (data != cached_ || (!this->f32_impl_ && !this->f64_impl_)) {
if (data != cached_ || !pimpl_) {
return false;
}
if (hist_param_.single_precision_histogram) {
this->f32_impl_->UpdatePredictionCache(data, out_preds);
} else {
this->f64_impl_->UpdatePredictionCache(data, out_preds);
}
this->pimpl_->UpdatePredictionCache(data, out_preds);
return true;
}

View File

@ -16,7 +16,6 @@
#include "driver.h"
#include "hist/evaluate_splits.h"
#include "hist/expand_entry.h"
#include "hist/param.h"
#include "param.h"
#include "xgboost/generic_parameters.h"
#include "xgboost/json.h"

View File

@ -32,7 +32,6 @@ DMLC_REGISTRY_FILE_TAG(updater_quantile_hist);
void QuantileHistMaker::Configure(const Args &args) {
param_.UpdateAllowUnknown(args);
hist_maker_param_.UpdateAllowUnknown(args);
}
void QuantileHistMaker::Update(HostDeviceVector<GradientPair> *gpair, DMatrix *dmat,
@ -44,24 +43,14 @@ void QuantileHistMaker::Update(HostDeviceVector<GradientPair> *gpair, DMatrix *d
// build tree
const size_t n_trees = trees.size();
if (hist_maker_param_.single_precision_histogram) {
if (!float_builder_) {
float_builder_.reset(new Builder<float>(n_trees, param_, dmat, task_, ctx_));
}
} else {
if (!double_builder_) {
double_builder_.reset(new Builder<double>(n_trees, param_, dmat, task_, ctx_));
}
if (!pimpl_) {
pimpl_.reset(new Builder(n_trees, param_, dmat, task_, ctx_));
}
size_t t_idx{0};
for (auto p_tree : trees) {
auto &t_row_position = out_position[t_idx];
if (hist_maker_param_.single_precision_histogram) {
this->float_builder_->UpdateTree(gpair, dmat, p_tree, &t_row_position);
} else {
this->double_builder_->UpdateTree(gpair, dmat, p_tree, &t_row_position);
}
this->pimpl_->UpdateTree(gpair, dmat, p_tree, &t_row_position);
++t_idx;
}
@ -70,17 +59,14 @@ void QuantileHistMaker::Update(HostDeviceVector<GradientPair> *gpair, DMatrix *d
bool QuantileHistMaker::UpdatePredictionCache(const DMatrix *data,
linalg::VectorView<float> out_preds) {
if (hist_maker_param_.single_precision_histogram && float_builder_) {
return float_builder_->UpdatePredictionCache(data, out_preds);
} else if (double_builder_) {
return double_builder_->UpdatePredictionCache(data, out_preds);
if (pimpl_) {
return pimpl_->UpdatePredictionCache(data, out_preds);
} else {
return false;
}
}
template <typename GradientSumT>
CPUExpandEntry QuantileHistMaker::Builder<GradientSumT>::InitRoot(
CPUExpandEntry QuantileHistMaker::Builder::InitRoot(
DMatrix *p_fmat, RegTree *p_tree, const std::vector<GradientPair> &gpair_h) {
CPUExpandEntry node(RegTree::kRoot, p_tree->GetDepth(0), 0.0f);
@ -96,7 +82,7 @@ CPUExpandEntry QuantileHistMaker::Builder<GradientSumT>::InitRoot(
}
{
GradientPairT grad_stat;
GradientPairPrecise grad_stat;
if (p_fmat->IsDense()) {
/**
* Specialized code for dense data: For dense data (with no missing value), the sum
@ -110,15 +96,14 @@ CPUExpandEntry QuantileHistMaker::Builder<GradientSumT>::InitRoot(
auto hist = this->histogram_builder_->Histogram()[RegTree::kRoot];
auto begin = hist.data();
for (uint32_t i = ibegin; i < iend; ++i) {
GradientPairT const &et = begin[i];
GradientPairPrecise const &et = begin[i];
grad_stat.Add(et.GetGrad(), et.GetHess());
}
} else {
for (auto const &grad : gpair_h) {
grad_stat.Add(grad.GetGrad(), grad.GetHess());
}
rabit::Allreduce<rabit::op::Sum, GradientSumT>(reinterpret_cast<GradientSumT *>(&grad_stat),
2);
rabit::Allreduce<rabit::op::Sum, double>(reinterpret_cast<double *>(&grad_stat), 2);
}
auto weight = evaluator_->InitRoot(GradStats{grad_stat});
@ -140,10 +125,9 @@ CPUExpandEntry QuantileHistMaker::Builder<GradientSumT>::InitRoot(
return node;
}
template <typename GradientSumT>
void QuantileHistMaker::Builder<GradientSumT>::BuildHistogram(
DMatrix *p_fmat, RegTree *p_tree, std::vector<CPUExpandEntry> const &valid_candidates,
std::vector<GradientPair> const &gpair) {
void QuantileHistMaker::Builder::BuildHistogram(DMatrix *p_fmat, RegTree *p_tree,
std::vector<CPUExpandEntry> const &valid_candidates,
std::vector<GradientPair> const &gpair) {
std::vector<CPUExpandEntry> nodes_to_build(valid_candidates.size());
std::vector<CPUExpandEntry> nodes_to_sub(valid_candidates.size());
@ -173,10 +157,9 @@ void QuantileHistMaker::Builder<GradientSumT>::BuildHistogram(
}
}
template <typename GradientSumT>
void QuantileHistMaker::Builder<GradientSumT>::LeafPartition(
RegTree const &tree, common::Span<GradientPair const> gpair,
std::vector<bst_node_t> *p_out_position) {
void QuantileHistMaker::Builder::LeafPartition(RegTree const &tree,
common::Span<GradientPair const> gpair,
std::vector<bst_node_t> *p_out_position) {
monitor_->Start(__func__);
if (!task_.UpdateTreeLeaf()) {
return;
@ -187,10 +170,9 @@ void QuantileHistMaker::Builder<GradientSumT>::LeafPartition(
monitor_->Stop(__func__);
}
template <typename GradientSumT>
void QuantileHistMaker::Builder<GradientSumT>::ExpandTree(
DMatrix *p_fmat, RegTree *p_tree, const std::vector<GradientPair> &gpair_h,
HostDeviceVector<bst_node_t> *p_out_position) {
void QuantileHistMaker::Builder::ExpandTree(DMatrix *p_fmat, RegTree *p_tree,
const std::vector<GradientPair> &gpair_h,
HostDeviceVector<bst_node_t> *p_out_position) {
monitor_->Start(__func__);
Driver<CPUExpandEntry> driver(static_cast<TrainParam::TreeGrowPolicy>(param_.grow_policy));
@ -252,10 +234,9 @@ void QuantileHistMaker::Builder<GradientSumT>::ExpandTree(
monitor_->Stop(__func__);
}
template <typename GradientSumT>
void QuantileHistMaker::Builder<GradientSumT>::UpdateTree(
HostDeviceVector<GradientPair> *gpair, DMatrix *p_fmat, RegTree *p_tree,
HostDeviceVector<bst_node_t> *p_out_position) {
void QuantileHistMaker::Builder::UpdateTree(HostDeviceVector<GradientPair> *gpair, DMatrix *p_fmat,
RegTree *p_tree,
HostDeviceVector<bst_node_t> *p_out_position) {
monitor_->Start(__func__);
std::vector<GradientPair> *gpair_ptr = &(gpair->HostVector());
@ -272,9 +253,8 @@ void QuantileHistMaker::Builder<GradientSumT>::UpdateTree(
monitor_->Stop(__func__);
}
template <typename GradientSumT>
bool QuantileHistMaker::Builder<GradientSumT>::UpdatePredictionCache(
DMatrix const *data, linalg::VectorView<float> out_preds) const {
bool QuantileHistMaker::Builder::UpdatePredictionCache(DMatrix const *data,
linalg::VectorView<float> out_preds) const {
// p_last_fmat_ is a valid pointer as long as UpdatePredictionCache() is called in
// conjunction with Update().
if (!p_last_fmat_ || !p_last_tree_ || data != p_last_fmat_) {
@ -287,9 +267,8 @@ bool QuantileHistMaker::Builder<GradientSumT>::UpdatePredictionCache(
return true;
}
template <typename GradientSumT>
void QuantileHistMaker::Builder<GradientSumT>::InitSampling(const DMatrix &fmat,
std::vector<GradientPair> *gpair) {
void QuantileHistMaker::Builder::InitSampling(const DMatrix &fmat,
std::vector<GradientPair> *gpair) {
monitor_->Start(__func__);
const auto &info = fmat.Info();
auto& rnd = common::GlobalRandom();
@ -325,14 +304,10 @@ void QuantileHistMaker::Builder<GradientSumT>::InitSampling(const DMatrix &fmat,
#endif // XGBOOST_CUSTOMIZE_GLOBAL_PRNG
monitor_->Stop(__func__);
}
template<typename GradientSumT>
size_t QuantileHistMaker::Builder<GradientSumT>::GetNumberOfTrees() {
return n_trees_;
}
size_t QuantileHistMaker::Builder::GetNumberOfTrees() { return n_trees_; }
template <typename GradientSumT>
void QuantileHistMaker::Builder<GradientSumT>::InitData(DMatrix *fmat, const RegTree &tree,
std::vector<GradientPair> *gpair) {
void QuantileHistMaker::Builder::InitData(DMatrix *fmat, const RegTree &tree,
std::vector<GradientPair> *gpair) {
monitor_->Start(__func__);
const auto& info = fmat->Info();
@ -362,8 +337,8 @@ void QuantileHistMaker::Builder<GradientSumT>::InitData(DMatrix *fmat, const Reg
// store a pointer to the tree
p_last_tree_ = &tree;
evaluator_.reset(new HistEvaluator<GradientSumT, CPUExpandEntry>{
param_, info, this->ctx_->Threads(), column_sampler_});
evaluator_.reset(
new HistEvaluator<CPUExpandEntry>{param_, info, this->ctx_->Threads(), column_sampler_});
monitor_->Stop(__func__);
}
@ -406,9 +381,6 @@ void HistRowPartitioner::AddSplitsToRowSet(const std::vector<CPUExpandEntry> &no
}
}
template struct QuantileHistMaker::Builder<float>;
template struct QuantileHistMaker::Builder<double>;
XGBOOST_REGISTER_TREE_UPDATER(QuantileHistMaker, "grow_quantile_histmaker")
.describe("Grow tree using quantized histogram.")
.set_body([](GenericParameter const *ctx, ObjInfo task) {

View File

@ -24,7 +24,6 @@
#include "hist/evaluate_splits.h"
#include "hist/histogram.h"
#include "hist/expand_entry.h"
#include "hist/param.h"
#include "constraints.h"
#include "./param.h"
@ -236,7 +235,7 @@ inline BatchParam HistBatch(TrainParam const& param) {
class QuantileHistMaker: public TreeUpdater {
public:
explicit QuantileHistMaker(GenericParameter const* ctx, ObjInfo task)
: task_{task}, TreeUpdater(ctx) {}
: TreeUpdater(ctx), task_{task} {}
void Configure(const Args& args) override;
void Update(HostDeviceVector<GradientPair>* gpair, DMatrix* dmat,
@ -249,12 +248,10 @@ class QuantileHistMaker: public TreeUpdater {
void LoadConfig(Json const& in) override {
auto const& config = get<Object const>(in);
FromJson(config.at("train_param"), &this->param_);
FromJson(config.at("cpu_hist_train_param"), &this->hist_maker_param_);
}
void SaveConfig(Json* p_out) const override {
auto& out = *p_out;
out["train_param"] = ToJson(param_);
out["cpu_hist_train_param"] = ToJson(hist_maker_param_);
}
char const* Name() const override {
@ -264,22 +261,19 @@ class QuantileHistMaker: public TreeUpdater {
bool HasNodePosition() const override { return true; }
protected:
CPUHistMakerTrainParam hist_maker_param_;
// training parameter
TrainParam param_;
// actual builder that runs the algorithm
template<typename GradientSumT>
struct Builder {
public:
using GradientPairT = xgboost::detail::GradientPairInternal<GradientSumT>;
// constructor
explicit Builder(const size_t n_trees, const TrainParam& param, DMatrix const* fmat,
ObjInfo task, GenericParameter const* ctx)
: n_trees_(n_trees),
param_(param),
p_last_fmat_(fmat),
histogram_builder_{new HistogramBuilder<GradientSumT, CPUExpandEntry>},
histogram_builder_{new HistogramBuilder<CPUExpandEntry>},
task_{task},
ctx_{ctx},
monitor_{std::make_unique<common::Monitor>()} {
@ -320,14 +314,14 @@ class QuantileHistMaker: public TreeUpdater {
std::vector<GradientPair> gpair_local_;
std::unique_ptr<HistEvaluator<GradientSumT, CPUExpandEntry>> evaluator_;
std::unique_ptr<HistEvaluator<CPUExpandEntry>> evaluator_;
std::vector<HistRowPartitioner> partitioner_;
// back pointers to tree and data matrix
const RegTree* p_last_tree_{nullptr};
DMatrix const* const p_last_fmat_;
std::unique_ptr<HistogramBuilder<GradientSumT, CPUExpandEntry>> histogram_builder_;
std::unique_ptr<HistogramBuilder<CPUExpandEntry>> histogram_builder_;
ObjInfo task_;
// Context for number of threads
GenericParameter const* ctx_;
@ -336,8 +330,7 @@ class QuantileHistMaker: public TreeUpdater {
};
protected:
std::unique_ptr<Builder<float>> float_builder_;
std::unique_ptr<Builder<double>> double_builder_;
std::unique_ptr<Builder> pimpl_;
ObjInfo task_;
};
} // namespace tree

View File

@ -16,7 +16,6 @@ namespace common {
size_t GetNThreads() { return common::OmpGetNumThreads(0); }
template <typename GradientSumT>
void ParallelGHistBuilderReset() {
constexpr size_t kBins = 10;
constexpr size_t kNodes = 5;
@ -25,16 +24,16 @@ void ParallelGHistBuilderReset() {
constexpr double kValue = 1.0;
const size_t nthreads = GetNThreads();
HistCollection<GradientSumT> collection;
HistCollection collection;
collection.Init(kBins);
for(size_t inode = 0; inode < kNodesExtended; inode++) {
collection.AddHistRow(inode);
}
collection.AllocateAllData();
ParallelGHistBuilder<GradientSumT> hist_builder;
ParallelGHistBuilder hist_builder;
hist_builder.Init(kBins);
std::vector<GHistRow<GradientSumT>> target_hist(kNodes);
std::vector<GHistRow> target_hist(kNodes);
for(size_t i = 0; i < target_hist.size(); ++i) {
target_hist[i] = collection[i];
}
@ -45,7 +44,7 @@ void ParallelGHistBuilderReset() {
common::ParallelFor2d(space, nthreads, [&](size_t inode, common::Range1d r) {
const size_t tid = omp_get_thread_num();
GHistRow<GradientSumT> hist = hist_builder.GetInitializedHist(tid, inode);
GHistRow hist = hist_builder.GetInitializedHist(tid, inode);
// fill hist by some non-null values
for(size_t j = 0; j < kBins; ++j) {
hist[j].Add(kValue, kValue);
@ -63,7 +62,7 @@ void ParallelGHistBuilderReset() {
common::ParallelFor2d(space2, nthreads, [&](size_t inode, common::Range1d r) {
const size_t tid = omp_get_thread_num();
GHistRow<GradientSumT> hist = hist_builder.GetInitializedHist(tid, inode);
GHistRow hist = hist_builder.GetInitializedHist(tid, inode);
// fill hist by some non-null values
for(size_t j = 0; j < kBins; ++j) {
ASSERT_EQ(0.0, hist[j].GetGrad());
@ -72,8 +71,6 @@ void ParallelGHistBuilderReset() {
});
}
template <typename GradientSumT>
void ParallelGHistBuilderReduceHist(){
constexpr size_t kBins = 10;
constexpr size_t kNodes = 5;
@ -81,16 +78,16 @@ void ParallelGHistBuilderReduceHist(){
constexpr double kValue = 1.0;
const size_t nthreads = GetNThreads();
HistCollection<GradientSumT> collection;
HistCollection collection;
collection.Init(kBins);
for(size_t inode = 0; inode < kNodes; inode++) {
collection.AddHistRow(inode);
}
collection.AllocateAllData();
ParallelGHistBuilder<GradientSumT> hist_builder;
ParallelGHistBuilder hist_builder;
hist_builder.Init(kBins);
std::vector<GHistRow<GradientSumT>> target_hist(kNodes);
std::vector<GHistRow> target_hist(kNodes);
for(size_t i = 0; i < target_hist.size(); ++i) {
target_hist[i] = collection[i];
}
@ -102,7 +99,7 @@ void ParallelGHistBuilderReduceHist(){
common::ParallelFor2d(space, nthreads, [&](size_t inode, common::Range1d r) {
const size_t tid = omp_get_thread_num();
GHistRow<GradientSumT> hist = hist_builder.GetInitializedHist(tid, inode);
GHistRow hist = hist_builder.GetInitializedHist(tid, inode);
for(size_t i = 0; i < kBins; ++i) {
hist[i].Add(kValue, kValue);
}
@ -120,21 +117,9 @@ void ParallelGHistBuilderReduceHist(){
}
}
TEST(ParallelGHistBuilder, ResetDouble) {
ParallelGHistBuilderReset<double>();
}
TEST(ParallelGHistBuilder, Reset) { ParallelGHistBuilderReset(); }
TEST(ParallelGHistBuilder, ResetFloat) {
ParallelGHistBuilderReset<float>();
}
TEST(ParallelGHistBuilder, ReduceHistDouble) {
ParallelGHistBuilderReduceHist<double>();
}
TEST(ParallelGHistBuilder, ReduceHistFloat) {
ParallelGHistBuilderReduceHist<float>();
}
TEST(ParallelGHistBuilder, ReduceHist) { ParallelGHistBuilderReduceHist(); }
TEST(CutsBuilder, SearchGroupInd) {
size_t constexpr kNumGroups = 4;

View File

@ -12,7 +12,7 @@
namespace xgboost {
namespace tree {
template <typename GradientSumT> void TestEvaluateSplits() {
void TestEvaluateSplits() {
int static constexpr kRows = 8, kCols = 16;
auto orig = omp_get_max_threads();
int32_t n_threads = std::min(omp_get_max_threads(), 4);
@ -24,9 +24,8 @@ template <typename GradientSumT> void TestEvaluateSplits() {
auto dmat = RandomDataGenerator(kRows, kCols, 0).Seed(3).GenerateDMatrix();
auto evaluator =
HistEvaluator<GradientSumT, CPUExpandEntry>{param, dmat->Info(), n_threads, sampler};
common::HistCollection<GradientSumT> hist;
auto evaluator = HistEvaluator<CPUExpandEntry>{param, dmat->Info(), n_threads, sampler};
common::HistCollection hist;
std::vector<GradientPair> row_gpairs = {
{1.23f, 0.24f}, {0.24f, 0.25f}, {0.26f, 0.27f}, {2.27f, 0.28f},
{0.27f, 0.29f}, {0.37f, 0.39f}, {-0.47f, 0.49f}, {0.57f, 0.59f}};
@ -40,7 +39,7 @@ template <typename GradientSumT> void TestEvaluateSplits() {
std::iota(row_indices.begin(), row_indices.end(), 0);
row_set_collection.Init();
auto hist_builder = common::GHistBuilder<GradientSumT>(gmat.cut.Ptrs().back());
auto hist_builder = common::GHistBuilder(gmat.cut.Ptrs().back());
hist.Init(gmat.cut.Ptrs().back());
hist.AddHistRow(0);
hist.AllocateAllData();
@ -85,10 +84,7 @@ template <typename GradientSumT> void TestEvaluateSplits() {
omp_set_num_threads(orig);
}
TEST(HistEvaluator, Evaluate) {
TestEvaluateSplits<float>();
TestEvaluateSplits<double>();
}
TEST(HistEvaluator, Evaluate) { TestEvaluateSplits(); }
TEST(HistEvaluator, Apply) {
RegTree tree;
@ -97,7 +93,7 @@ TEST(HistEvaluator, Apply) {
param.UpdateAllowUnknown(Args{{"min_child_weight", "0"}, {"reg_lambda", "0.0"}});
auto dmat = RandomDataGenerator(kNRows, kNCols, 0).Seed(3).GenerateDMatrix();
auto sampler = std::make_shared<common::ColumnSampler>();
auto evaluator_ = HistEvaluator<float, CPUExpandEntry>{param, dmat->Info(), 4, sampler};
auto evaluator_ = HistEvaluator<CPUExpandEntry>{param, dmat->Info(), 4, sampler};
CPUExpandEntry entry{0, 0, 10.0f};
entry.split.left_sum = GradStats{0.4, 0.6f};
@ -123,8 +119,7 @@ TEST_F(TestPartitionBasedSplit, CPUHist) {
// check the evaluator is returning the optimal split
std::vector<FeatureType> ft{FeatureType::kCategorical};
auto sampler = std::make_shared<common::ColumnSampler>();
HistEvaluator<double, CPUExpandEntry> evaluator{param_, info_, common::OmpGetNumThreads(0),
sampler};
HistEvaluator<CPUExpandEntry> evaluator{param_, info_, common::OmpGetNumThreads(0), sampler};
evaluator.InitRoot(GradStats{total_gpair_});
RegTree tree;
std::vector<CPUExpandEntry> entries(1);
@ -155,12 +150,11 @@ auto CompareOneHotAndPartition(bool onehot) {
int32_t n_threads = 16;
auto sampler = std::make_shared<common::ColumnSampler>();
auto evaluator =
HistEvaluator<GradientSumT, CPUExpandEntry>{param, dmat->Info(), n_threads, sampler};
auto evaluator = HistEvaluator<CPUExpandEntry>{param, dmat->Info(), n_threads, sampler};
std::vector<CPUExpandEntry> entries(1);
for (auto const &gmat : dmat->GetBatches<GHistIndexMatrix>({32, param.sparse_threshold})) {
common::HistCollection<GradientSumT> hist;
common::HistCollection hist;
entries.front().nid = 0;
entries.front().depth = 0;

View File

@ -23,7 +23,6 @@ void InitRowPartitionForTest(common::RowSetCollection *row_set, size_t n_samples
}
} // anonymous namespace
template <typename GradientSumT>
void TestAddHistRows(bool is_distributed) {
std::vector<CPUExpandEntry> nodes_for_explicit_hist_build_;
std::vector<CPUExpandEntry> nodes_for_subtraction_trick_;
@ -46,7 +45,7 @@ void TestAddHistRows(bool is_distributed) {
nodes_for_subtraction_trick_.emplace_back(5, tree.GetDepth(5), 0.0f);
nodes_for_subtraction_trick_.emplace_back(6, tree.GetDepth(6), 0.0f);
HistogramBuilder<GradientSumT, CPUExpandEntry> histogram_builder;
HistogramBuilder<CPUExpandEntry> histogram_builder;
histogram_builder.Reset(gmat.cut.TotalBins(), {kMaxBins, 0.5}, omp_get_max_threads(), 1,
is_distributed);
histogram_builder.AddHistRows(&starting_index, &sync_count,
@ -66,14 +65,10 @@ void TestAddHistRows(bool is_distributed) {
TEST(CPUHistogram, AddRows) {
TestAddHistRows<float>(true);
TestAddHistRows<double>(true);
TestAddHistRows<float>(false);
TestAddHistRows<double>(false);
TestAddHistRows(true);
TestAddHistRows(false);
}
template <typename GradientSumT>
void TestSyncHist(bool is_distributed) {
size_t constexpr kNRows = 8, kNCols = 16;
int32_t constexpr kMaxBins = 4;
@ -88,7 +83,7 @@ void TestSyncHist(bool is_distributed) {
RandomDataGenerator(kNRows, kNCols, 0.8).Seed(3).GenerateDMatrix();
auto const &gmat = *(p_fmat->GetBatches<GHistIndexMatrix>(BatchParam{kMaxBins, 0.5}).begin());
HistogramBuilder<GradientSumT, CPUExpandEntry> histogram;
HistogramBuilder<CPUExpandEntry> histogram;
uint32_t total_bins = gmat.cut.Ptrs().back();
histogram.Reset(total_bins, {kMaxBins, 0.5}, omp_get_max_threads(), 1, is_distributed);
@ -153,7 +148,7 @@ void TestSyncHist(bool is_distributed) {
},
256);
std::vector<common::GHistRow<GradientSumT>> target_hists(n_nodes);
std::vector<common::GHistRow> target_hists(n_nodes);
for (size_t i = 0; i < nodes_for_explicit_hist_build_.size(); ++i) {
const int32_t nid = nodes_for_explicit_hist_build_[i].nid;
target_hists[i] = histogram.Histogram()[nid];
@ -163,7 +158,7 @@ void TestSyncHist(bool is_distributed) {
std::vector<size_t> n_ids = {1, 2};
for (size_t i : n_ids) {
auto this_hist = histogram.Histogram()[i];
GradientSumT *p_hist = reinterpret_cast<GradientSumT *>(this_hist.data());
double *p_hist = reinterpret_cast<double *>(this_hist.data());
for (size_t bin_id = 0; bin_id < 2 * total_bins; ++bin_id) {
p_hist[bin_id] = 2 * bin_id;
}
@ -172,7 +167,7 @@ void TestSyncHist(bool is_distributed) {
n_ids[1] = 5;
for (size_t i : n_ids) {
auto this_hist = histogram.Histogram()[i];
GradientSumT *p_hist = reinterpret_cast<GradientSumT *>(this_hist.data());
double *p_hist = reinterpret_cast<double *>(this_hist.data());
for (size_t bin_id = 0; bin_id < 2 * total_bins; ++bin_id) {
p_hist[bin_id] = bin_id;
}
@ -190,15 +185,12 @@ void TestSyncHist(bool is_distributed) {
sync_count);
}
using GHistRowT = common::GHistRow<GradientSumT>;
auto check_hist = [](const GHistRowT parent, const GHistRowT left,
const GHistRowT right, size_t begin, size_t end) {
const GradientSumT *p_parent =
reinterpret_cast<const GradientSumT *>(parent.data());
const GradientSumT *p_left =
reinterpret_cast<const GradientSumT *>(left.data());
const GradientSumT *p_right =
reinterpret_cast<const GradientSumT *>(right.data());
using GHistRowT = common::GHistRow;
auto check_hist = [](const GHistRowT parent, const GHistRowT left, const GHistRowT right,
size_t begin, size_t end) {
const double *p_parent = reinterpret_cast<const double *>(parent.data());
const double *p_left = reinterpret_cast<const double *>(left.data());
const double *p_right = reinterpret_cast<const double *>(right.data());
for (size_t i = 2 * begin; i < 2 * end; ++i) {
ASSERT_EQ(p_parent[i], p_left[i] + p_right[i]);
}
@ -230,14 +222,10 @@ void TestSyncHist(bool is_distributed) {
}
TEST(CPUHistogram, SyncHist) {
TestSyncHist<float>(true);
TestSyncHist<double>(true);
TestSyncHist<float>(false);
TestSyncHist<double>(false);
TestSyncHist(true);
TestSyncHist(false);
}
template <typename GradientSumT>
void TestBuildHistogram(bool is_distributed) {
size_t constexpr kNRows = 8, kNCols = 16;
int32_t constexpr kMaxBins = 4;
@ -252,7 +240,7 @@ void TestBuildHistogram(bool is_distributed) {
{0.27f, 0.29f}, {0.37f, 0.39f}, {0.47f, 0.49f}, {0.57f, 0.59f}};
bst_node_t nid = 0;
HistogramBuilder<GradientSumT, CPUExpandEntry> histogram;
HistogramBuilder<CPUExpandEntry> histogram;
histogram.Reset(total_bins, {kMaxBins, 0.5}, omp_get_max_threads(), 1, is_distributed);
RegTree tree;
@ -296,11 +284,8 @@ void TestBuildHistogram(bool is_distributed) {
}
TEST(CPUHistogram, BuildHist) {
TestBuildHistogram<float>(true);
TestBuildHistogram<double>(true);
TestBuildHistogram<float>(false);
TestBuildHistogram<double>(false);
TestBuildHistogram(true);
TestBuildHistogram(false);
}
namespace {
@ -329,7 +314,7 @@ void TestHistogramCategorical(size_t n_categories) {
/**
* Generate hist with cat data.
*/
HistogramBuilder<double, CPUExpandEntry> cat_hist;
HistogramBuilder<CPUExpandEntry> cat_hist;
for (auto const &gidx : cat_m->GetBatches<GHistIndexMatrix>({kBins, 0.5})) {
auto total_bins = gidx.cut.TotalBins();
cat_hist.Reset(total_bins, {kBins, 0.5}, omp_get_max_threads(), 1, false);
@ -342,7 +327,7 @@ void TestHistogramCategorical(size_t n_categories) {
*/
auto x_encoded = OneHotEncodeFeature(x, n_categories);
auto encode_m = GetDMatrixFromData(x_encoded, kRows, n_categories);
HistogramBuilder<double, CPUExpandEntry> onehot_hist;
HistogramBuilder<CPUExpandEntry> onehot_hist;
for (auto const &gidx : encode_m->GetBatches<GHistIndexMatrix>({kBins, 0.5})) {
auto total_bins = gidx.cut.TotalBins();
onehot_hist.Reset(total_bins, {kBins, 0.5}, omp_get_max_threads(), 1, false);
@ -382,8 +367,8 @@ void TestHistogramExternalMemory(BatchParam batch_param, bool is_approx) {
std::vector<CPUExpandEntry> nodes;
nodes.emplace_back(0, tree.GetDepth(0), 0.0f);
common::GHistRow<double> multi_page;
HistogramBuilder<double, CPUExpandEntry> multi_build;
common::GHistRow multi_page;
HistogramBuilder<CPUExpandEntry> multi_build;
{
/**
* Multi page
@ -417,8 +402,8 @@ void TestHistogramExternalMemory(BatchParam batch_param, bool is_approx) {
multi_page = multi_build.Histogram()[0];
}
HistogramBuilder<double, CPUExpandEntry> single_build;
common::GHistRow<double> single_page;
HistogramBuilder<CPUExpandEntry> single_build;
common::GHistRow single_page;
{
/**
* Single page

View File

@ -22,7 +22,7 @@ class TestPartitionBasedSplit : public ::testing::Test {
MetaInfo info_;
float best_score_{-std::numeric_limits<float>::infinity()};
common::HistogramCuts cuts_;
common::HistCollection<double> hist_;
common::HistCollection hist_;
GradientPairPrecise total_gpair_;
void SetUp() override {
@ -55,7 +55,7 @@ class TestPartitionBasedSplit : public ::testing::Test {
total_gpair_ += e;
}
auto enumerate = [this, n_feat = info_.num_col_](common::GHistRow<double> hist,
auto enumerate = [this, n_feat = info_.num_col_](common::GHistRow hist,
GradientPairPrecise parent_sum) {
int32_t best_thresh = -1;
float best_score{-std::numeric_limits<float>::infinity()};