xgboost/tests/cpp/tree/test_evaluate_splits.h
Jiaming Yuan 1b6538b4e5
[breaking] Drop single precision histogram (#7892)
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2022-05-13 19:54:55 +08:00

97 lines
3.1 KiB
C++

/*!
* Copyright 2022 by XGBoost Contributors
*/
#include <gtest/gtest.h>
#include <algorithm> // next_permutation
#include <numeric> // iota
#include "../../../src/tree/hist/evaluate_splits.h"
#include "../helpers.h"
namespace xgboost {
namespace tree {
/**
* \brief Enumerate all possible partitions for categorical split.
*/
class TestPartitionBasedSplit : public ::testing::Test {
protected:
size_t n_bins_ = 6;
std::vector<size_t> sorted_idx_;
TrainParam param_;
MetaInfo info_;
float best_score_{-std::numeric_limits<float>::infinity()};
common::HistogramCuts cuts_;
common::HistCollection hist_;
GradientPairPrecise total_gpair_;
void SetUp() override {
param_.UpdateAllowUnknown(Args{{"min_child_weight", "0"}, {"reg_lambda", "0"}});
sorted_idx_.resize(n_bins_);
std::iota(sorted_idx_.begin(), sorted_idx_.end(), 0);
info_.num_col_ = 1;
cuts_.cut_ptrs_.Resize(2);
cuts_.SetCategorical(true, n_bins_);
auto &h_cuts = cuts_.cut_ptrs_.HostVector();
h_cuts[0] = 0;
h_cuts[1] = n_bins_;
auto &h_vals = cuts_.cut_values_.HostVector();
h_vals.resize(n_bins_);
std::iota(h_vals.begin(), h_vals.end(), 0.0);
hist_.Init(cuts_.TotalBins());
hist_.AddHistRow(0);
hist_.AllocateAllData();
auto node_hist = hist_[0];
SimpleLCG lcg;
SimpleRealUniformDistribution<double> grad_dist{-4.0, 4.0};
SimpleRealUniformDistribution<double> hess_dist{0.0, 4.0};
for (auto &e : node_hist) {
e = GradientPairPrecise{grad_dist(&lcg), hess_dist(&lcg)};
total_gpair_ += e;
}
auto enumerate = [this, n_feat = info_.num_col_](common::GHistRow hist,
GradientPairPrecise parent_sum) {
int32_t best_thresh = -1;
float best_score{-std::numeric_limits<float>::infinity()};
TreeEvaluator evaluator{param_, static_cast<bst_feature_t>(n_feat), -1};
auto tree_evaluator = evaluator.GetEvaluator<TrainParam>();
GradientPairPrecise left_sum;
auto parent_gain = tree_evaluator.CalcGain(0, param_, GradStats{total_gpair_});
for (size_t i = 0; i < hist.size() - 1; ++i) {
left_sum += hist[i];
auto right_sum = parent_sum - left_sum;
auto gain =
tree_evaluator.CalcSplitGain(param_, 0, 0, GradStats{left_sum}, GradStats{right_sum}) -
parent_gain;
if (gain > best_score) {
best_score = gain;
best_thresh = i;
}
}
return std::make_tuple(best_thresh, best_score);
};
// enumerate all possible partitions to find the optimal split
do {
int32_t thresh;
float score;
std::vector<GradientPairPrecise> sorted_hist(node_hist.size());
for (size_t i = 0; i < sorted_hist.size(); ++i) {
sorted_hist[i] = node_hist[sorted_idx_[i]];
}
std::tie(thresh, score) = enumerate({sorted_hist}, total_gpair_);
if (score > best_score_) {
best_score_ = score;
}
} while (std::next_permutation(sorted_idx_.begin(), sorted_idx_.end()));
}
};
} // namespace tree
} // namespace xgboost