This PR rewrites the approx tree method to use codebase from hist for better performance and code sharing.
The rewrite has many benefits:
- Support for both `max_leaves` and `max_depth`.
- Support for `grow_policy`.
- Support for mono constraint.
- Support for feature weights.
- Support for easier bin configuration (`max_bin`).
- Support for categorical data.
- Faster performance for most of the datasets. (many times faster)
- Support for prediction cache.
- Significantly better performance for external memory.
- Unites the code base between approx and hist.
* Add num target model parameter, which is configured from input labels.
* Change elementwise metric and indexing for weights.
* Add demo.
* Add tests.
Change from system Python to environment python3. For Ubuntu 20.04, only `python3` is
available and there's no `python`. So at least `python3` is consistent with Python
virtual env, Ubuntu and anaconda.
A new parameter `custom_metric` is added to `train` and `cv` to distinguish the behaviour from the old `feval`. And `feval` is deprecated. The new `custom_metric` receives transformed prediction when the built-in objective is used. This enables XGBoost to use cost functions from other libraries like scikit-learn directly without going through the definition of the link function.
`eval_metric` and `early_stopping_rounds` in sklearn interface are moved from `fit` to `__init__` and is now saved as part of the scikit-learn model. The old ones in `fit` function are now deprecated. The new `eval_metric` in `__init__` has the same new behaviour as `custom_metric`.
Added more detailed documents for the behaviour of custom objective and metric.
* Support more input types for categorical data.
* Shorten the type name from "categorical" to "c".
* Tests for np/cp array and scipy csr/csc/coo.
* Specify the type for feature info.
* Add feature score support for linear model.
* Port R interface to the new implementation.
* Add linear model support in Python.
Co-authored-by: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
* Ensure RMM is 0.18 or later
* Add use_rmm flag to global configuration
* Modify XGBCachingDeviceAllocatorImpl to skip CUB when use_rmm=True
* Update the demo
* [CI] Pin NumPy to 1.19.4, since NumPy 1.19.5 doesn't work with latest Shap
CLI is not most developed interface. Putting them into correct directory can help new users to avoid it as most of the use cases are from a language binding.
* Change DefaultEvalMetric of classification from error to logloss
* Change default binary metric in plugin/example/custom_obj.cc
* Set old error metric in python tests
* Set old error metric in R tests
* Fix missed eval metrics and typos in R tests
* Fix setting eval_metric twice in R tests
* Add warning for empty eval_metric for classification
* Fix Dask tests
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>