Update Python documents. (#6376)
This commit is contained in:
parent
c5645180a6
commit
c90f968d92
@ -14,15 +14,15 @@ print('running cross validation')
|
||||
# std_value is standard deviation of the metric
|
||||
xgb.cv(param, dtrain, num_round, nfold=5,
|
||||
metrics={'error'}, seed=0,
|
||||
callbacks=[xgb.callback.print_evaluation(show_stdv=True)])
|
||||
callbacks=[xgb.callback.EvaluationMonitor(show_stdv=True)])
|
||||
|
||||
print('running cross validation, disable standard deviation display')
|
||||
# do cross validation, this will print result out as
|
||||
# [iteration] metric_name:mean_value
|
||||
res = xgb.cv(param, dtrain, num_boost_round=10, nfold=5,
|
||||
metrics={'error'}, seed=0,
|
||||
callbacks=[xgb.callback.print_evaluation(show_stdv=False),
|
||||
xgb.callback.early_stop(3)])
|
||||
callbacks=[xgb.callback.EvaluationMonitor(show_stdv=False),
|
||||
xgb.callback.EarlyStopping(3)])
|
||||
print(res)
|
||||
print('running cross validation, with preprocessing function')
|
||||
# define the preprocessing function
|
||||
|
||||
@ -69,13 +69,15 @@ Plotting API
|
||||
|
||||
Callback API
|
||||
------------
|
||||
.. autofunction:: xgboost.callback.print_evaluation
|
||||
.. autofunction:: xgboost.callback.TrainingCallback
|
||||
|
||||
.. autofunction:: xgboost.callback.record_evaluation
|
||||
.. autofunction:: xgboost.callback.EvaluationMonitor
|
||||
|
||||
.. autofunction:: xgboost.callback.reset_learning_rate
|
||||
.. autofunction:: xgboost.callback.EarlyStopping
|
||||
|
||||
.. autofunction:: xgboost.callback.early_stop
|
||||
.. autofunction:: xgboost.callback.LearningRateScheduler
|
||||
|
||||
.. autofunction:: xgboost.callback.TrainingCheckPoint
|
||||
|
||||
.. _dask_api:
|
||||
|
||||
@ -91,6 +93,8 @@ Dask API
|
||||
|
||||
.. autofunction:: xgboost.dask.predict
|
||||
|
||||
.. autofunction:: xgboost.dask.inplace_predict
|
||||
|
||||
.. autofunction:: xgboost.dask.DaskXGBClassifier
|
||||
|
||||
.. autofunction:: xgboost.dask.DaskXGBRegressor
|
||||
|
||||
@ -510,7 +510,8 @@ class XGBModel(XGBModelBase):
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[xgb.callback.reset_learning_rate(custom_rates)]
|
||||
callbacks = [xgb.callback.EarlyStopping(rounds=early_stopping_rounds,
|
||||
save_best=True)]
|
||||
|
||||
"""
|
||||
self.n_features_in_ = X.shape[1]
|
||||
@ -1249,7 +1250,8 @@ class XGBRanker(XGBModel):
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
[xgb.callback.reset_learning_rate(custom_rates)]
|
||||
callbacks = [xgb.callback.EarlyStopping(rounds=early_stopping_rounds,
|
||||
save_best=True)]
|
||||
|
||||
"""
|
||||
# check if group information is provided
|
||||
|
||||
@ -123,9 +123,10 @@ class TestCallbacks(unittest.TestCase):
|
||||
X, y = load_breast_cancer(return_X_y=True)
|
||||
cls = xgb.XGBClassifier()
|
||||
early_stopping_rounds = 5
|
||||
early_stop = xgb.callback.EarlyStopping(rounds=early_stopping_rounds)
|
||||
cls.fit(X, y, eval_set=[(X, y)],
|
||||
early_stopping_rounds=early_stopping_rounds,
|
||||
eval_metric=tm.eval_error_metric)
|
||||
eval_metric=tm.eval_error_metric,
|
||||
callbacks=[early_stop])
|
||||
booster = cls.get_booster()
|
||||
dump = booster.get_dump(dump_format='json')
|
||||
assert len(dump) - booster.best_iteration == early_stopping_rounds + 1
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user