Clarify the behavior of use_rmm. (#6808)
* Clarify the `use_rmm` flag in document and demo.
This commit is contained in:
parent
3039dd194b
commit
ca998df912
@ -27,5 +27,21 @@ cmake .. -DUSE_CUDA=ON -DUSE_NCCL=ON -DPLUGIN_RMM=ON -DCMAKE_PREFIX_PATH=$CONDA_
|
||||
cmake .. -DUSE_CUDA=ON -DUSE_NCCL=ON -DPLUGIN_RMM=ON -DCMAKE_PREFIX_PATH=/path/to/rmm
|
||||
```
|
||||
|
||||
# Informing XGBoost about RMM pool
|
||||
|
||||
When XGBoost is compiled with RMM, most of the large size allocation will go through RMM
|
||||
allocators, but some small allocations in performance critical areas are using a different
|
||||
caching allocator so that we can have better control over memory allocation behavior.
|
||||
Users can override this behavior and force the use of rmm for all allocations by setting
|
||||
the global configuration ``use_rmm``:
|
||||
|
||||
``` python
|
||||
with xgb.config_context(use_rmm=True):
|
||||
clf = xgb.XGBClassifier(tree_method="gpu_hist")
|
||||
```
|
||||
|
||||
Depending on the choice of memory pool size or type of allocator, this may have negative
|
||||
performance impact.
|
||||
|
||||
* [Using RMM with a single GPU](./rmm_singlegpu.py)
|
||||
* [Using RMM with a local Dask cluster consisting of multiple GPUs](./rmm_mgpu_with_dask.py)
|
||||
|
||||
@ -4,11 +4,14 @@ import dask
|
||||
from dask.distributed import Client
|
||||
from dask_cuda import LocalCUDACluster
|
||||
|
||||
|
||||
def main(client):
|
||||
# Inform XGBoost that RMM is used for GPU memory allocation
|
||||
xgb.set_config(use_rmm=True)
|
||||
# Optionally force XGBoost to use RMM for all GPU memory allocation, see ./README.md
|
||||
# xgb.set_config(use_rmm=True)
|
||||
|
||||
X, y = make_classification(n_samples=10000, n_informative=5, n_classes=3)
|
||||
# In pratice one should prefer loading the data with dask collections instead of using
|
||||
# `from_array`.
|
||||
X = dask.array.from_array(X)
|
||||
y = dask.array.from_array(y)
|
||||
dtrain = xgb.dask.DaskDMatrix(client, X, label=y)
|
||||
@ -22,6 +25,7 @@ def main(client):
|
||||
for i, e in enumerate(history['train']['merror']):
|
||||
print(f'[{i}] train-merror: {e}')
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# To use RMM pool allocator with a GPU Dask cluster, just add rmm_pool_size option to
|
||||
# LocalCUDACluster constructor.
|
||||
|
||||
@ -4,13 +4,18 @@ from sklearn.datasets import make_classification
|
||||
|
||||
# Initialize RMM pool allocator
|
||||
rmm.reinitialize(pool_allocator=True)
|
||||
# Inform XGBoost that RMM is used for GPU memory allocation
|
||||
xgb.set_config(use_rmm=True)
|
||||
# Optionally force XGBoost to use RMM for all GPU memory allocation, see ./README.md
|
||||
# xgb.set_config(use_rmm=True)
|
||||
|
||||
X, y = make_classification(n_samples=10000, n_informative=5, n_classes=3)
|
||||
dtrain = xgb.DMatrix(X, label=y)
|
||||
|
||||
params = {'max_depth': 8, 'eta': 0.01, 'objective': 'multi:softprob', 'num_class': 3,
|
||||
'tree_method': 'gpu_hist'}
|
||||
params = {
|
||||
"max_depth": 8,
|
||||
"eta": 0.01,
|
||||
"objective": "multi:softprob",
|
||||
"num_class": 3,
|
||||
"tree_method": "gpu_hist",
|
||||
}
|
||||
# XGBoost will automatically use the RMM pool allocator
|
||||
bst = xgb.train(params, dtrain, num_boost_round=100, evals=[(dtrain, 'train')])
|
||||
bst = xgb.train(params, dtrain, num_boost_round=100, evals=[(dtrain, "train")])
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user