* Fix various typos
* Add override to functions that are overridden
gcc gives warnings about functions that are being overridden by not
being marked as oveirridden. This fixes it.
* Use bst_float consistently
Use bst_float for all the variables that involve weight,
leaf value, gradient, hessian, gain, loss_chg, predictions,
base_margin, feature values.
In some cases, when due to additions and so on the value can
take a larger value, double is used.
This ensures that type conversions are minimal and reduces loss of
precision.
In ecb3a271bed151252fb048528ce5a90ad75bb68f the silent argument
in XGDMatrixCreateFromFile of c_api.cc was always overridden to
be false. This disabled the functionality to hide log messages.
This commit reverts that part to enable the hiding of log messages.
On Unix systems, it's common for programs to read their input from stdin, and
write their output to stdout. Messages should be written to stderr, where they
won't corrupt a program's output, and where they can be seen by the user even
if the output is being redirected.
This is mostly a problem when XGBoost is being used from Python or from another
program.
* add support for tweedie regression
* added back readme line that was accidentally deleted
* fixed linting errors
* add support for tweedie regression
* added back readme line that was accidentally deleted
* fixed linting errors
* rebased with upstream master and added R example
* changed parameter name to tweedie_variance_power
* linting error fix
* refactored tweedie-nloglik metric to be more like the other parameterized metrics
* added upper and lower bound check to tweedie metric
* add support for tweedie regression
* added back readme line that was accidentally deleted
* fixed linting errors
* added upper and lower bound check to tweedie metric
* added back readme line that was accidentally deleted
* rebased with upstream master and added R example
* rebased again on top of upstream master
* linting error fix
* added upper and lower bound check to tweedie metric
* rebased with master
* lint fix
* removed whitespace at end of line 186 - elementwise_metric.cc
* Add format to the params accepted by DumpModel
Currently, only the test format is supported when trying to dump
a model. The plan is to add more such formats like JSON which are
easy to read and/or parse by machines. And to make the interface
for this even more generic to allow other formats to be added.
Hence, we make some modifications to make these function generic
and accept a new parameter "format" which signifies the format of
the dump to be created.
* Fix typos and errors in docs
* plugin: Mention all the register macros available
Document the register macros currently available to the plugin
writers so they know what exactly can be extended using hooks.
* sparce_page_source: Use same arg name in .h and .cc
* gbm: Add JSON dump
The dump_format argument can be used to specify what type
of dump file should be created. Add functionality to dump
gblinear and gbtree into a JSON file.
The JSON file has an array, each item is a JSON object for the tree.
For gblinear:
- The item is the bias and weights vectors
For gbtree:
- The item is the root node. The root node has a attribute "children"
which holds the children nodes. This happens recursively.
* core.py: Add arg dump_format for get_dump()
* correct CalcDCG in rank_metric.cc
DCG use log base-2, however `std::log` returns log base-e.
* correct CalcDCG in rank_obj.cc
DCG use log base-2, however `std::log` returns log base-e.
* use std::log2 instead of std::log
make it more elegant
* use std::log2 instead of std::log
make it more elegant
* [TREE] Experimental version of monotone constraint
* Allow default detection of montone option
* loose the condition of strict check
* Update gbtree.cc
* Add deviance metric for gamma regression
* Simplify the computation of nloglik for gamma regression
* Add a description for gamma-deviance
* Minor fix
* Add support for Gamma regression
* Use base_score to replace the lp_bias
* Remove the lp_bias config block
* Add a demo for running gamma regression in Python
* Typo fix
* Revise the description for objective
* Add a script to generate the autoclaims dataset