[jvm-packages] xgboost4j-spark external memory (#1219)
* implement external memory support for XGBoost4J * remove extra space * enable external memory for prediction * update doc
This commit is contained in:
parent
587999755f
commit
c85b9012c6
@ -27,4 +27,4 @@ Resources
|
||||
## Scala API Docs
|
||||
* [XGBoost4J](http://dmlc.ml/docs/scaladocs/xgboost4j/index.html)
|
||||
* [XGBoost4J-Spark](http://dmlc.ml/docs/scaladocs/xgboost4j-spark/index.html)
|
||||
* [XGBoost4J-Flink](http://dmlc.ml/docs/scaladocs/xgboost4j-flink/index.html)
|
||||
* [XGBoost4J-Flink](http://dmlc.ml/docs/scaladocs/xgboost4j-flink/index.html)
|
||||
|
||||
@ -61,7 +61,6 @@ object DistTrainWithSpark {
|
||||
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
|
||||
sparkConf.registerKryoClasses(Array(classOf[Booster]))
|
||||
val sc = new SparkContext(sparkConf)
|
||||
val sc = new SparkContext(sparkConf)
|
||||
val inputTrainPath = args(1)
|
||||
val outputModelPath = args(2)
|
||||
// number of iterations
|
||||
@ -73,7 +72,8 @@ object DistTrainWithSpark {
|
||||
"max_depth" -> 2,
|
||||
"objective" -> "binary:logistic").toMap
|
||||
// use 5 distributed workers to train the model
|
||||
val model = XGBoost.train(trainRDD, paramMap, numRound, nWorkers = 5)
|
||||
// useExternalMemory indicates whether
|
||||
val model = XGBoost.train(trainRDD, paramMap, numRound, nWorkers = 5, useExternalMemory = true)
|
||||
// save model to HDFS path
|
||||
model.saveModelToHadoop(outputModelPath)
|
||||
}
|
||||
|
||||
@ -32,8 +32,8 @@ public class ExternalMemory {
|
||||
//this is the only difference, add a # followed by a cache prefix name
|
||||
//several cache file with the prefix will be generated
|
||||
//currently only support convert from libsvm file
|
||||
DMatrix trainMat = new DMatrix("../../demo/data/agaricus.txt.train#dtrain.cache");
|
||||
DMatrix testMat = new DMatrix("../../demo/data/agaricus.txt.test#dtest.cache");
|
||||
DMatrix trainMat = new DMatrix("../demo/data/agaricus.txt.train#dtrain.cache");
|
||||
DMatrix testMat = new DMatrix("../demo/data/agaricus.txt.test#dtest.cache");
|
||||
|
||||
//specify parameters
|
||||
HashMap<String, Object> params = new HashMap<String, Object>();
|
||||
|
||||
@ -28,7 +28,7 @@ object DistTrainWithSpark {
|
||||
"usage: program num_of_rounds num_workers training_path test_path model_path")
|
||||
sys.exit(1)
|
||||
}
|
||||
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("XGBoost-spark-example")
|
||||
val sparkConf = new SparkConf().setAppName("XGBoost-spark-example")
|
||||
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
|
||||
sparkConf.registerKryoClasses(Array(classOf[Booster]))
|
||||
val sc = new SparkContext(sparkConf)
|
||||
@ -45,7 +45,8 @@ object DistTrainWithSpark {
|
||||
"eta" -> 0.1f,
|
||||
"max_depth" -> 2,
|
||||
"objective" -> "binary:logistic").toMap
|
||||
val xgboostModel = XGBoost.train(trainRDD, paramMap, numRound, nWorkers = args(1).toInt)
|
||||
val xgboostModel = XGBoost.train(trainRDD, paramMap, numRound, nWorkers = args(1).toInt,
|
||||
useExternalMemory = true)
|
||||
xgboostModel.predict(new DMatrix(testSet))
|
||||
// save model to HDFS path
|
||||
xgboostModel.saveModelAsHadoopFile(outputModelPath)
|
||||
|
||||
@ -16,6 +16,8 @@
|
||||
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import java.nio.file.Paths
|
||||
|
||||
import scala.collection.mutable
|
||||
import scala.collection.JavaConverters._
|
||||
|
||||
@ -41,7 +43,8 @@ object XGBoost extends Serializable {
|
||||
trainingData: RDD[LabeledPoint],
|
||||
xgBoostConfMap: Map[String, Any],
|
||||
rabitEnv: mutable.Map[String, String],
|
||||
numWorkers: Int, round: Int, obj: ObjectiveTrait, eval: EvalTrait): RDD[Booster] = {
|
||||
numWorkers: Int, round: Int, obj: ObjectiveTrait, eval: EvalTrait,
|
||||
useExternalMemory: Boolean): RDD[Booster] = {
|
||||
import DataUtils._
|
||||
val partitionedData = {
|
||||
if (numWorkers > trainingData.partitions.length) {
|
||||
@ -54,11 +57,19 @@ object XGBoost extends Serializable {
|
||||
trainingData
|
||||
}
|
||||
}
|
||||
val appName = partitionedData.context.appName
|
||||
partitionedData.mapPartitions {
|
||||
trainingSamples =>
|
||||
rabitEnv.put("DMLC_TASK_ID", TaskContext.getPartitionId().toString)
|
||||
Rabit.init(rabitEnv.asJava)
|
||||
val trainingSet = new DMatrix(new JDMatrix(trainingSamples, null))
|
||||
val cacheFileName: String = {
|
||||
if (useExternalMemory && trainingSamples.hasNext) {
|
||||
s"$appName-dtrain_cache-${TaskContext.getPartitionId()}"
|
||||
} else {
|
||||
null
|
||||
}
|
||||
}
|
||||
val trainingSet = new DMatrix(new JDMatrix(trainingSamples, cacheFileName))
|
||||
val booster = SXGBoost.train(trainingSet, xgBoostConfMap, round,
|
||||
watches = new mutable.HashMap[String, DMatrix]{put("train", trainingSet)}.toMap,
|
||||
obj, eval)
|
||||
@ -76,12 +87,15 @@ object XGBoost extends Serializable {
|
||||
* workers equals to the partition number of trainingData RDD
|
||||
* @param obj the user-defined objective function, null by default
|
||||
* @param eval the user-defined evaluation function, null by default
|
||||
* @param useExternalMemory indicate whether to use external memory cache, by setting this flag as
|
||||
* true, the user may save the RAM cost for running XGBoost within Spark
|
||||
* @throws ml.dmlc.xgboost4j.java.XGBoostError when the model training is failed
|
||||
* @return XGBoostModel when successful training
|
||||
*/
|
||||
@throws(classOf[XGBoostError])
|
||||
def train(trainingData: RDD[LabeledPoint], configMap: Map[String, Any], round: Int,
|
||||
nWorkers: Int, obj: ObjectiveTrait = null, eval: EvalTrait = null): XGBoostModel = {
|
||||
nWorkers: Int, obj: ObjectiveTrait = null, eval: EvalTrait = null,
|
||||
useExternalMemory: Boolean = false): XGBoostModel = {
|
||||
require(nWorkers > 0, "you must specify more than 0 workers")
|
||||
val tracker = new RabitTracker(nWorkers)
|
||||
implicit val sc = trainingData.sparkContext
|
||||
@ -97,7 +111,7 @@ object XGBoost extends Serializable {
|
||||
}
|
||||
require(tracker.start(), "FAULT: Failed to start tracker")
|
||||
val boosters = buildDistributedBoosters(trainingData, overridedConfMap,
|
||||
tracker.getWorkerEnvs.asScala, nWorkers, round, obj, eval)
|
||||
tracker.getWorkerEnvs.asScala, nWorkers, round, obj, eval, useExternalMemory)
|
||||
val sparkJobThread = new Thread() {
|
||||
override def run() {
|
||||
// force the job
|
||||
|
||||
@ -17,7 +17,7 @@
|
||||
package ml.dmlc.xgboost4j.scala.spark
|
||||
|
||||
import org.apache.hadoop.fs.{Path, FileSystem}
|
||||
import org.apache.spark.SparkContext
|
||||
import org.apache.spark.{TaskContext, SparkContext}
|
||||
import org.apache.spark.mllib.linalg.Vector
|
||||
import org.apache.spark.rdd.RDD
|
||||
import ml.dmlc.xgboost4j.java.{DMatrix => JDMatrix}
|
||||
@ -27,13 +27,23 @@ class XGBoostModel(_booster: Booster)(implicit val sc: SparkContext) extends Ser
|
||||
|
||||
/**
|
||||
* Predict result with the given testset (represented as RDD)
|
||||
* @param testSet test set representd as RDD
|
||||
* @param useExternalCache whether to use external cache for the test set
|
||||
*/
|
||||
def predict(testSet: RDD[Vector]): RDD[Array[Array[Float]]] = {
|
||||
def predict(testSet: RDD[Vector], useExternalCache: Boolean = false): RDD[Array[Array[Float]]] = {
|
||||
import DataUtils._
|
||||
val broadcastBooster = testSet.sparkContext.broadcast(_booster)
|
||||
val appName = testSet.context.appName
|
||||
testSet.mapPartitions { testSamples =>
|
||||
if (testSamples.hasNext) {
|
||||
val dMatrix = new DMatrix(new JDMatrix(testSamples, null))
|
||||
val cacheFileName = {
|
||||
if (useExternalCache) {
|
||||
s"$appName-dtest_cache-${TaskContext.getPartitionId()}"
|
||||
} else {
|
||||
null
|
||||
}
|
||||
}
|
||||
val dMatrix = new DMatrix(new JDMatrix(testSamples, cacheFileName))
|
||||
Iterator(broadcastBooster.value.predict(dMatrix))
|
||||
} else {
|
||||
Iterator()
|
||||
|
||||
@ -127,7 +127,7 @@ class XGBoostSuite extends FunSuite with BeforeAndAfter {
|
||||
List("eta" -> "1", "max_depth" -> "2", "silent" -> "0",
|
||||
"objective" -> "binary:logistic").toMap,
|
||||
new scala.collection.mutable.HashMap[String, String],
|
||||
numWorkers = 2, round = 5, null, null)
|
||||
numWorkers = 2, round = 5, null, null, false)
|
||||
val boosterCount = boosterRDD.count()
|
||||
assert(boosterCount === 2)
|
||||
val boosters = boosterRDD.collect()
|
||||
@ -210,4 +210,26 @@ class XGBoostSuite extends FunSuite with BeforeAndAfter {
|
||||
|
||||
println(xgBoostModel.predict(testRDD))
|
||||
}
|
||||
|
||||
test("training with external memory cache") {
|
||||
sc.stop()
|
||||
sc = null
|
||||
val sparkConf = new SparkConf().setMaster("local[*]").setAppName("XGBoostSuite")
|
||||
val customSparkContext = new SparkContext(sparkConf)
|
||||
val eval = new EvalError()
|
||||
val trainingRDD = buildTrainingRDD(Some(customSparkContext))
|
||||
val testSet = readFile(getClass.getResource("/agaricus.txt.test").getFile).iterator
|
||||
import DataUtils._
|
||||
val testSetDMatrix = new DMatrix(new JDMatrix(testSet, null))
|
||||
val paramMap = List("eta" -> "1", "max_depth" -> "2", "silent" -> "0",
|
||||
"objective" -> "binary:logistic").toMap
|
||||
val xgBoostModel = XGBoost.train(trainingRDD, paramMap, 5, numWorkers, useExternalMemory = true)
|
||||
assert(eval.eval(xgBoostModel.predict(testSetDMatrix), testSetDMatrix) < 0.1)
|
||||
customSparkContext.stop()
|
||||
// clean
|
||||
val dir = new File(".")
|
||||
for (file <- dir.listFiles() if file.getName.startsWith("XGBoostSuite-dtrain_cache")) {
|
||||
file.delete()
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -201,7 +201,6 @@ void SparsePageSource::Create(DMatrix* src,
|
||||
<< (bytes_write >> 20UL) << " written";
|
||||
}
|
||||
}
|
||||
|
||||
if (page->data.size() != 0) {
|
||||
writer.PushWrite(std::move(page));
|
||||
}
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user