* Removal of redundant code/files.
* Removal of exact namespace in GPU plugin
* Revert double precision histograms to single precision for performance on Maxwell/Kepler
* repared serialization after update process; fixes#2545
* non-stratified folds in python could omit some data instances
* Makefile: fixes for older makes on windows; clean R-package too
* make cub to be a shallow submodule
* improve $(MAKE) recovery
* for MinGW, drop the 'lib' prefix from shared library name
* fix defines for 'g++ 4.8 or higher' to include g++ >= 5
* fix compile warnings
* [Appveyor] add MinGW with python; remove redundant jobs
* [Appveyor] also do python build for one of msvc jobs
It has been reported that new parallel algorithm (#2493) results in excessive
message usage (see issue #2326). Until issues are resolved, XGBoost should use
the old parallel algorithm by default. The user would have to specify
`enable_feature_grouping=1` manually to enable the new algorithm.
* Patch to improve multithreaded performance scaling
Change parallel strategy for histogram construction.
Instead of partitioning data rows among multiple threads, partition feature
columns instead. Useful heuristics for assigning partitions have been adopted
from LightGBM project.
* Add missing header to satisfy MSVC
* Restore max_bin and related parameters to TrainParam
* Fix lint error
* inline functions do not require static keyword
* Feature grouping algorithm accepting FastHistParam
Feature grouping algorithm accepts many parameters (3+), and it gets annoying to
pass them one by one. Instead, simply pass the reference to FastHistParam. The
definition of FastHistParam has been moved to a separate header file to
accomodate this change.
Use int32_t explicitly when serializing version field of dmatrix in binary
format. On ILP64 architectures, although very little, size of int is 64 bits.
* [gblinear] add features contribution prediction; fix DumpModel bug
* [gbtree] minor changes to PredContrib
* [R] add feature contribution prediction to R
* [R] bump up version; update NEWS
* [gblinear] fix the base_margin issue; fixes#1969
* [R] list of matrices as output of multiclass feature contributions
* [gblinear] make order of DumpModel coefficients consistent: group index changes the fastest
* Fix compilation on OS X with GCC 7
Compilation failed with
In file included from src/tree/tree_updater.cc:6:0:
include/xgboost/tree_updater.h:75:46: error: 'function' is not a member of 'std'
std::function<TreeUpdater* ()> > {
caused by a missing <functional> include.
* Fixed another occurence of that issue spotted by @ClimberPG
* Add prediction of feature contributions
This implements the idea described at http://blog.datadive.net/interpreting-random-forests/
which tries to give insight in how a prediction is composed of its feature contributions
and a bias.
* Support multi-class models
* Calculate learning_rate per-tree instead of using the one from the first tree
* Do not rely on node.base_weight * learning_rate having the same value as the node mean value (aka leaf value, if it were a leaf); instead calculate them (lazily) on-the-fly
* Add simple test for contributions feature
* Check against param.num_nodes instead of checking for non-zero length
* Loop over all roots instead of only the first
Reported in issue #2165. Dynamic scheduling of OpenMP loops involve
implicit synchronization. To implement synchronization, libgomp uses futex
(fast userspace mutex), whereas MinGW uses kernel-space mutex, which is more
costly. With chunk size of 1, synchronization overhead may become prohibitive
on Windows machines.
Solution: use 'guided' schedule to minimize the number of syncs
Storing and then loading a model loses any eval_metric that was
provided. This causes implementations that always store/load, like
xgboost4j-spark, to be unable to eval with the desired metric.
This log appears to fire every time I ask the python package to make a prediction. It's the only log that fires from XGBoost. When we're getting predictions on millions of items a day in production, this log seems out of place.
* Bugfix 1: Fix segfault in multithreaded ApplySplitSparseData()
When there are more threads than rows in rowset, some threads end up
with empty ranges, causing them to crash. (iend - 1 needs to be
accessible as part of algorithm)
Fix: run only those threads with nonempty ranges.
* Add regression test for Bugfix 1
* Moving python_omp_test to existing python test group
Turns out you don't need to set "OMP_NUM_THREADS" to enable
multithreading. Just add nthread parameter.
* Bugfix 2: Fix corner case of ApplySplitSparseData() for categorical feature
When split value is less than all cut points, split_cond is set
incorrectly.
Fix: set split_cond = -1 to indicate this scenario
* Bugfix 3: Initialize data layout indicator before using it
data_layout_ is accessed before being set; this variable determines
whether feature 0 is included in feat_set.
Fix: re-order code in InitData() to initialize data_layout_ first
* Adding regression test for Bugfix 2
Unfortunately, no regression test for Bugfix 3, as there is no
way to deterministically assign value to an uninitialized variable.
* Add UpdatePredictionCache() option to updaters
Some updaters (e.g. fast_hist) has enough information to quickly compute
prediction cache for the training data. Each updater may override
UpdaterPredictionCache() method to update the prediction cache. Note: this
trick does not apply to validation data.
* Respond to code review
* Disable some debug messages by default
* Document UpdatePredictionCache() interface
* Remove base_margin logic from UpdatePredictionCache() implementation
* Do not take pointer to cfg, as reference may get stale
* Improve multi-threaded performance
* Use columnwise accessor to accelerate ApplySplit() step,
with support for a compressed representation
* Parallel sort for evaluation step
* Inline BuildHist() function
* Cache gradient pairs when building histograms in BuildHist()
* Add missing #if macro
* Respond to code review
* Use wrapper to enable parallel sort on Linux
* Fix C++ compatibility issues
* MSVC doesn't support unsigned in OpenMP loops
* gcc 4.6 doesn't support using keyword
* Fix lint issues
* Respond to code review
* Fix bug in ApplySplitSparseData()
* Attempting to read beyond the end of a sparse column
* Mishandling the case where an entire range of rows have missing values
* Fix training continuation bug
Disable UpdatePredictionCache() in the first iteration. This way, we can
accomodate the scenario where we build off of an existing (nonempty) ensemble.
* Add regression test for fast_hist
* Respond to code review
* Add back old version of ApplySplitSparseData
As discussed in issue #1978, tree_method=hist ignores the parameter
param.num_roots; it simply assumes that the tree has only one root. In
particular, when InitData() method initializes row_set_collection_, it simply
assigns all rows to node 0, the value that's hard-coded.
For now, the updater will simply fail when num_roots exceeds 1. I will revise
the updater soon to support multiple roots.
* Support histogram-based algorithm + multiple tree growing strategy
* Add a brand new updater to support histogram-based algorithm, which buckets
continuous features into discrete bins to speed up training. To use it, set
`tree_method = fast_hist` to configuration.
* Support multiple tree growing strategies. For now, two policies are supported:
* `grow_policy=depthwise` (default): favor splitting at nodes closest to the
root, i.e. grow depth-wise.
* `grow_policy=lossguide`: favor splitting at nodes with highest loss change
* Improve single-threaded performance
* Unroll critical loops
* Introduce specialized code for dense data (i.e. no missing values)
* Additional training parameters: `max_leaves`, `max_bin`, `grow_policy`, `verbose`
* Adding a small test for hist method
* Fix memory error in row_set.h
When std::vector is resized, a reference to one of its element may become
stale. Any such reference must be updated as well.
* Resolve cross-platform compilation issues
* Versions of g++ older than 4.8 lacks support for a few C++11 features, e.g.
alignas(*) and new initializer syntax. To support g++ 4.6, use pre-C++11
initializer and remove alignas(*).
* Versions of MSVC older than 2015 does not support alignas(*). To support
MSVC 2012, remove alignas(*).
* For g++ 4.8 and newer, alignas(*) is enabled for performance benefits.
* Some old compilers (MSVC 2012, g++ 4.6) do not support template aliases
(which uses `using` to declate type aliases). So always use `typedef`.
* Fix a host of CI issues
* Remove dependency for libz on osx
* Fix heading for hist_util
* Fix minor style issues
* Add missing #include
* Remove extraneous logging
* Enable tree_method=hist in R
* Renaming HistMaker to GHistBuilder to avoid confusion
* Fix R integration
* Respond to style comments
* Consistent tie-breaking for priority queue using timestamps
* Last-minute style fixes
* Fix issuecomment-271977647
The way we quantize data is broken. The agaricus data consists of all
categorical values. When NAs are converted into 0's,
`HistCutMatrix::Init` assign both 0's and 1's to the same single bin.
Why? gmat only the smallest value (0) and an upper bound (2), which is twice
the maximum value (1). Add the maximum value itself to gmat to fix the issue.
* Fix issuecomment-272266358
* Remove padding from cut values for the continuous case
* For categorical/ordinal values, use midpoints as bin boundaries to be safe
* Fix CI issue -- do not use xrange(*)
* Fix corner case in quantile sketch
Signed-off-by: Philip Cho <chohyu01@cs.washington.edu>
* Adding a test for an edge case in quantile sketcher
max_bin=2 used to cause an exception.
* Fix fast_hist test
The test used to require a strictly increasing Test AUC for all examples.
One of them exhibits a small blip in Test AUC before achieving a Test AUC
of 1. (See bottom.)
Solution: do not require monotonic increase for this particular example.
[0] train-auc:0.99989 test-auc:0.999497
[1] train-auc:1 test-auc:0.999749
[2] train-auc:1 test-auc:0.999749
[3] train-auc:1 test-auc:0.999749
[4] train-auc:1 test-auc:0.999749
[5] train-auc:1 test-auc:0.999497
[6] train-auc:1 test-auc:1
[7] train-auc:1 test-auc:1
[8] train-auc:1 test-auc:1
[9] train-auc:1 test-auc:1
The GetWeight is a wrapper which sets the correct weight
if the weights vector is not provided. Hence accessing the default
weights vector is not recommended.
* [CORE] allow updating trees in an existing model
* [CORE] in refresh updater, allow keeping old leaf values and update stats only
* [R-package] xgb.train mod to allow updating trees in an existing model
* [R-package] added check for nrounds when is_update
* [CORE] merge parameter declaration changes; unify their code style
* [CORE] move the update-process trees initialization to Configure; rename default process_type to 'default'; fix the trees and trees_to_update sizes comparison check
* [R-package] unit tests for the update process type
* [DOC] documentation for process_type parameter; improved docs for updater, Gamma and Tweedie; added some parameter aliases; metrics indentation and some were non-documented
* fix my sloppy merge conflict resolutions
* [CORE] add a TreeProcessType enum
* whitespace fix