* Save feature info in booster in JSON model.
* [breaking] Remove automatic feature name generation in `DMatrix`.
This PR is to enable reliable feature validation in Python package.
* Add ability to load booster direct from byte array
* fix compiler error
* move InputStream to byte-buffer conversion
- move it from Booster to XGBoost facade class
* Use normal predictor for dart booster.
* Implement `inplace_predict` for dart.
* Enable `dart` for dask interface now that it's thread-safe.
* categorical data should be working out of box for dart now.
The implementation is not very efficient as it has to pull back the data and
apply weight for each tree, but still a significant improvement over previous
implementation as now we no longer binary search for each sample.
* Fix output prediction shape on dataframe.
* Stop printing out message.
* Remove R specialization.
The printed message is not really useful anyway, without a reproducible example
there's no way to fix it. But if there's a reproducible example, we can always
obtain these information by a debugger. Removing the `printf` function avoids
creating the context in kernel.
* Add a new API function for predicting on `DMatrix`. This function aligns
with rest of the `XGBoosterPredictFrom*` functions on semantic of function
arguments.
* Purge `ntree_limit` from libxgboost, use iteration instead.
* [dask] Use `inplace_predict` by default for dask sklearn models.
* [dask] Run prediction shape inference on worker instead of client.
The breaking change is in the Python sklearn `apply` function, I made it to be
consistent with other prediction functions where `best_iteration` is used by
default.
* Accept array interface for csr and array.
* Accept an optional proxy dmatrix for metainfo.
This constructs an explicit `_ProxyDMatrix` type in Python.
* Remove unused doc.
* Add strict output.
This PR changes predict and inplace_predict to accept a Future of model, to avoid sending models to workers repeatably.
* Document is updated to reflect functionality additions in recent changes.
* [dask] Use a 1 line sample to infer output shape.
This is for inferring shape with direct prediction (without DaskDMatrix).
There are a few things that requires known output shape before carrying out
actual prediction, including dask meta data, output dataframe columns.
* Infer output shape based on local prediction.
* Remove set param in predict function as it's not thread safe nor necessary as
we now let dask to decide the parallelism.
* Simplify prediction on `DaskDMatrix`.
This PR ensures all DMatrix types have a common interface.
* Fix logic in avoiding duplicated DMatrix in sklearn.
* Check for consistency between DMatrix types.
* Add doc for bounds.
* [java] extending the library loader to use both OS and CPU architecture.
* Simplifying create_jni.py's architecture detection.
* Tidying up the architecture detection in create_jni.py