* Ensure that configured header (build_config.h) from dmlc-core is picked up by Rabit and XGBoost
* Check which Rabit target is being used
* Use CMake 3.13 in all Jenkins tests
* Upgrade CMake in Travis CI
* Install CMake using Kitware installer
* Remove existing CMake (3.12.4)
* Use devtoolset-6.
* [CI] Use devtoolset-6 because devtoolset-4 is EOL and no longer available
* CUDA 9.0 doesn't work with devtoolset-6; use devtoolset-4 for GPU build only
Co-authored-by: Hyunsu Cho <chohyu01@cs.washington.edu>
* Remove f-string, since it's not supported by Python 3.5 (#5330)
* Remove f-string, since it's not supported by Python 3.5
* Add Python 3.5 to CI, to ensure compatibility
* Remove duplicated matplotlib
* Show deprecation notice for Python 3.5
* Fix lint
* Fix lint
* Fix a unit test that mistook MINOR ver for PATCH ver
* Enforce only major version in JSON model schema
* Bump version to 1.1.0-SNAPSHOT
* Add OpenMP as CMake target
* Require CMake 3.12, to allow linking OpenMP target to objxgboost
* Specify OpenMP compiler flag for CUDA host compiler
* Require CMake 3.16+ if the OS is Mac OSX
* Use AppleClang in Mac tests.
* Update dmlc-core
This makes GPU Hist robust in distributed environment as some workers might not
be associated with any data in either training or evaluation.
* Disable rabit mock test for now: See #5012 .
* Disable dask-cudf test at prediction for now: See #5003
* Launch dask job for all workers despite they might not have any data.
* Check 0 rows in elementwise evaluation metrics.
Using AUC and AUC-PR still throws an error. See #4663 for a robust fix.
* Add tests for edge cases.
* Add `LaunchKernel` wrapper handling zero sized grid.
* Move some parts of allreducer into a cu file.
* Don't validate feature names when the booster is empty.
* Sync number of columns in DMatrix.
As num_feature is required to be the same across all workers in data split
mode.
* Filtering in dask interface now by default syncs all booster that's not
empty, instead of using rank 0.
* Fix Jenkins' GPU tests.
* Install dask-cuda from source in Jenkins' test.
Now all tests are actually running.
* Restore GPU Hist tree synchronization test.
* Check UUID of running devices.
The check is only performed on CUDA version >= 10.x, as 9.x doesn't have UUID field.
* Fix CMake policy and project variables.
Use xgboost_SOURCE_DIR uniformly, add policy for CMake >= 3.13.
* Fix copying data to CPU
* Fix race condition in cpu predictor.
* Fix duplicated DMatrix construction.
* Don't download extra nccl in CI script.
* Do not store built artifacts in the Jenkins master
* Add wheel renaming script
* Upload wheels to S3 bucket
* Use env.GIT_COMMIT
* Capture git hash correctly
* Add missing import in Jenkinsfile
* Address reviewer's comments
* Put artifacts for pull requests in separate directory
* No wildcard expansion in Windows CMD
* Use `UpdateAllowUnknown' for non-model related parameter.
Model parameter can not pack an additional boolean value due to binary IO
format. This commit deals only with non-model related parameter configuration.
* Add tidy command line arg for use-dmlc-gtest.
* bump scala to 2.12 which requires java 8 and also newer flink and akka
* put scala version in artifactId
* fix appveyor
* fix for scaladoc issue that looks like https://github.com/scala/bug/issues/10509
* fix ci_build
* update versions in generate_pom.py
* fix generate_pom.py
* apache does not have a download for spark 2.4.3 distro using scala 2.12 yet, so for now i use a tgz i put on s3
* Upload spark-2.4.3-bin-scala2.12-hadoop2.7.tgz to our own S3
* Update Dockerfile.jvm_cross
* Update Dockerfile.jvm_cross
* Add to documentation how to build native unit tests
* Add instructions to run Python tests and to use Docker container [skip ci]
* Fix link to pytest chapter
* Add link to Google Test [skip ci]
* Set PYTHONPATH [skip ci]
* Revise test_python.sh for running tests locally
* Update test_python.sh
* Place Docker recommendation notice in a prominent place [skip ci]
* Add CMake option to use bundled gtest from dmlc-core, so that it is easy to build XGBoost with gtest on Windows
* Consistently apply OpenMP flag to all targets. Force enable OpenMP when USE_CUDA is turned on.
* Insert vcomp140.dll into Windows wheels
* Add C++ and Python tests for CPU and GPU targets (CUDA 9.0, 10.0, 10.1)
* Prevent spurious msbuild failure
* Add GPU tests
* Upgrade dmlc-core
* Make CMakeLists.txt compatible with CMake 3.3; require CMake 3.11 for MSVC
* Use CMake 3.12 when sanitizer is enabled
* Disable funroll-loops for MSVC
* Use cmake version in container name
* Add missing arg
* Fix egrep use in ci_build.sh
* Display CMake version
* Do not set OpenMP_CXX_LIBRARIES for MSVC
* Use cmake_minimum_required()
* All Linux tests are now in Jenkins CI
* Tests are now de-coupled from builds. We can now build XGBoost with one version of CUDA/JDK and test it with another version of CUDA/JDK
* Builds (compilation) are significantly faster because 1) They use C5 instances with faster CPU cores; and 2) build environment setup is cached using Docker containers
* Refactor CMake scripts.
* Remove CMake CUDA wrapper.
* Bump CMake version for CUDA.
* Use CMake to handle Doxygen.
* Split up CMakeList.
* Export install target.
* Use modern CMake.
* Remove build.sh
* Workaround for gpu_hist test.
* Use cmake 3.12.
* Revert machine.conf.
* Move CLI test to gpu.
* Small cleanup.
* Support using XGBoost as submodule.
* Fix windows
* Fix cpp tests on Windows
* Remove duplicated find_package.
* When building pull requests, use Docker cache for master branch
Docker build caches are per-branch, so new pull requests will initially
have no build cache, causing the Docker containers to be built from
scratch. New pull requests should use the cache associated with the
master branch. This makes sense, since most pull requests do not modify
the Dockerfile.
* Add comments
* make the assignments of HostDeviceVector exception safe.
* storing a dummy GPUDistribution instance in HDV for CPU based code.
* change testxgboost binary location to build directory.
* Improved multi-node multi-GPU random forests.
- removed rabit::Broadcast() from each invocation of column sampling
- instead, syncing the PRNG seed when a ColumnSampler() object is constructed
- this makes non-trivial column sampling significantly faster in the distributed case
- refactored distributed GPU tests
- added distributed random forests tests
* Upgrade gtest for clang-tidy.
* Use CMake to install GTest instead of mv.
* Don't enforce clang-tidy to return 0 due to errors in thrust.
* Add a small test for tidy itself.
* Reformat.