150 Commits

Author SHA1 Message Date
Jiaming Yuan
7e72a12871
Don't set_params at the end of set_state. (#4947)
* Don't set_params at the end of set_state.

* Also fix another issue found in dask prediction.

* Add note about prediction.

Don't support other prediction modes at the moment.
2019-10-15 10:08:26 -04:00
Jiaming Yuan
2ebdec8aa6
Fix dask prediction. (#4941)
* Fix dask prediction.

* Add better error messages for wrong partition.
2019-10-14 23:19:34 -04:00
Philip Hyunsu Cho
f7487e4c2a [CI] Run cuDF tests in Jenkins CI server (#4927) 2019-10-13 00:04:54 -04:00
Jiaming Yuan
4bbf062ed3
[Breaking] Update sklearn interface. (#4929)
* Remove nthread, seed, silent. Add tree_method, gpu_id, num_parallel_tree. Fix #4909.
* Check data shape. Fix #4896.
* Check element of eval_set is tuple. Fix #4875
*  Add doc for random_state with hogwild. Fixes #4919
2019-10-12 02:50:09 -04:00
Jiaming Yuan
6c9b6f11da Use cudf.concat explicitly. (#4918)
* Use `cudf.concat` explicitly.

* Add test.
2019-10-10 16:02:10 +13:00
Jiaming Yuan
b8433c455a
Rewrite Dask interface. (#4819) 2019-09-25 01:30:14 -04:00
Jiaming Yuan
5374f52531
Complete cudf support. (#4850)
* Handles missing value.
* Accept all floating point and integer types.
* Move to cudf 9.0 API.
* Remove requirement on `null_count`.
* Arbitrary column types support.
2019-09-16 23:52:00 -04:00
Jiaming Yuan
6e6216ad67
Skip related tests when sklearn is not installed. (#4791) 2019-08-21 00:32:52 -04:00
Jiaming Yuan
9700776597 Cudf support. (#4745)
* Initial support for cudf integration.

* Add two C APIs for consuming data and metainfo.

* Add CopyFrom for SimpleCSRSource as a generic function to consume the data.

* Add FromDeviceColumnar for consuming device data.

* Add new MetaInfo::SetInfo for consuming label, weight etc.
2019-08-19 16:51:40 +12:00
Evan Kepner
53d4272c2a add os.PathLike support for file paths to DMatrix and Booster Python classes (#4757) 2019-08-15 04:46:25 -04:00
Xu Xiao
ef9af33a00 [HOTFIX] distributed training with hist method (#4716)
* add parallel test for hist.EvalualiteSplit

* update test_openmp.py

* update test_openmp.py

* update test_openmp.py

* update test_openmp.py

* update test_openmp.py

* fix OMP schedule policy

* fix clang-tidy

* add logging: total_num_bins

* fix

* fix

* test

* replace guided OPENMP policy with static in updater_quantile_hist.cc
2019-08-13 11:27:29 -07:00
Rong Ou
851b5b3808 Remove gpu_exact tree method (#4742) 2019-08-07 11:43:20 +12:00
Xu Xiao
97eece6ea0 [python package] include dmlc-tracker into xgb python pkg (#4731) 2019-08-05 12:21:07 -04:00
Jiaming Yuan
f0064c07ab
Refactor configuration [Part II]. (#4577)
* Refactor configuration [Part II].

* General changes:
** Remove `Init` methods to avoid ambiguity.
** Remove `Configure(std::map<>)` to avoid redundant copying and prepare for
   parameter validation. (`std::vector` is returned from `InitAllowUnknown`).
** Add name to tree updaters for easier debugging.

* Learner changes:
** Make `LearnerImpl` the only source of configuration.

    All configurations are stored and carried out by `LearnerImpl::Configure()`.

** Remove booster in C API.

    Originally kept for "compatibility reason", but did not state why.  So here
    we just remove it.

** Add a `metric_names_` field in `LearnerImpl`.
** Remove `LazyInit`.  Configuration will always be lazy.
** Run `Configure` before every iteration.

* Predictor changes:
** Allocate both cpu and gpu predictor.
** Remove cpu_predictor from gpu_predictor.

    `GBTree` is now used to dispatch the predictor.

** Remove some GPU Predictor tests.

* IO

No IO changes.  The binary model format stability is tested by comparing
hashing value of save models between two commits
2019-07-20 08:34:56 -04:00
Philip Hyunsu Cho
1aaf4a679d
Fix early stopping in the Python package (#4638)
* Fix #4630, #4421: Preserve correct ordering between metrics, and always use last metric for early stopping

* Clarify semantics of early stopping in presence of multiple valid sets and metrics

* Add a test

* Fix lint
2019-07-07 01:01:03 -07:00
Oleksandr Pryimak
986fee6022 pytest tests/python fails if no pandas installed (#4620)
* _maybe_pandas_xxx should return their arguments unchanged if no pandas installed

* Tests should not assume pandas is installed

* Mark tests which require pandas as such
2019-07-01 02:54:08 +08:00
Jiaming Yuan
8bdf15120a
Implement tree model dump with code generator. (#4602)
* Implement tree model dump with a code generator.

* Split up generators.
* Implement graphviz generator.
* Use pattern matching.

* [Breaking] Return a Source in `to_graphviz` instead of Digraph in Python package.


Co-Authored-By: Philip Hyunsu Cho <chohyu01@cs.washington.edu>
2019-06-26 15:20:44 +08:00
Jiaming Yuan
ae05948e32
Feature interaction for GPU Hist. (#4534)
* GPU hist Interaction Constraints.
* Duplicate related parameters.
* Add tests for CPU interaction constraint.
* Add better error reporting.
* Thorough tests.
2019-06-19 18:11:02 +08:00
Rory Mitchell
09b90d9329
Add native support for Dask (#4473)
* Add native support for Dask

* Add multi-GPU demo

* Add sklearn example
2019-05-27 13:29:28 +12:00
Bryan Woods
278562db13 Add support for cross-validation using query ID (#4474)
* adding support for matrix slicing with query ID for cross-validation

* hail mary test of unrar installation for windows tests

* trying to modify tests to run in Github CI

* Remove dependency on wget and unrar

* Save error log from R test

* Relax assertion in test_training

* Use int instead of bool in C function interface

* Revise R interface

* Add XGDMatrixSliceDMatrixEx and keep old XGDMatrixSliceDMatrix for API compatibility
2019-05-23 10:45:02 -07:00
Xin Yin
8d1098a983 In AUC and AUCPR metrics, detect whether weights are per-instance or per-group (#4216)
* In AUC and AUCPR metrics, detect whether weights are per-instance or per-group

* Fix C++ style check

* Add a test for weighted AUC
2019-05-04 00:53:04 -07:00
Philip Hyunsu Cho
9252b686ae
Make AUCPR work with multiple query groups (#4436)
* Make AUCPR work with multiple query groups

* Check AUCPR <= 1.0 in distributed setting
2019-05-03 10:34:44 -07:00
Philip Hyunsu Cho
ba98e0cdf2
Add additional Python tests to test training under constraints (#4426) 2019-04-30 18:23:39 -07:00
Rong Ou
2c61f02add fix broken python test (#4395) 2019-04-23 16:01:23 -07:00
Jiaming Yuan
29a1356669
Deprecate reg:linear' in favor of reg:squarederror'. (#4267)
* Deprecate `reg:linear' in favor of `reg:squarederror'.
* Replace the use of `reg:linear'.
* Replace the use of `silent`.
2019-03-17 17:55:04 +08:00
Andy Adinets
4352fcdb15 Brought the silent parameter for the SKLearn-like API back, marked it deprecated. (#4255)
* Brought the silent parameter for the SKLearn-like API back, marked it deprecated.

- added deprecation notice and warning
- removed silent from the tests for the SKLearn-like API
2019-03-14 09:45:08 +13:00
Andy Adinets
a36c3ed4f4 Added SKLearn-like random forest Python API. (#4148)
* Added SKLearn-like random forest Python API.

- added XGBRFClassifier and XGBRFRegressor classes to SKL-like xgboost API
- also added n_gpus and gpu_id parameters to SKL classes
- added documentation describing how to use xgboost for random forests,
  as well as existing caveats
2019-03-12 22:28:19 +08:00
Patrick Ford
74009afcac Added trees_to_df() method for Booster class (#4153)
* add test_parse_tree.py to tests/python

* Fix formatting

* Fix pylint error

* Ignore 'no member' error for Pandas dataframe
2019-02-26 13:28:24 -08:00
Philip Hyunsu Cho
2aaae2e7bb
Fix #4163: always copy sliced data (#4165)
* Revert "Accept numpy array view. (#4147)"

This reverts commit a985a99cf0dacb26a5d734835473d492d3c2a0df.

* Fix #4163: always copy sliced data

* Remove print() from the test; check shape equality

* Check if 'base' attribute exists

* Fix lint

* Address reviewer comment

* Fix lint
2019-02-20 14:46:34 -08:00
Jiaming Yuan
cecbe0cf71 Fix test_gpu_coordinate. (#3974)
* Fix test_gpu_coordinate.

* Use `gpu_coord_descent` in test.
* Reduce number of running rounds.

* Remove nthread.

* Use githubusercontent for r-appveyor.

* Use githubusercontent in travis r tests.
2019-02-19 14:09:10 -08:00
Nan Zhu
1dac5e2410
more correct way to build node stats in distributed fast hist (#4140)
* add back train method but mark as deprecated

* add back train method but mark as deprecated

* add back train method but mark as deprecated

* fix scalastyle error

* fix scalastyle error

* fix scalastyle error

* fix scalastyle error

* more changes

* temp

* update

* udpate rabit

* change the histogram

* update kfactor

* sync per node stats

* temp

* update

* final

* code clean

* update rabit

* more cleanup

* fix errors

* fix failed tests

* enforce c++11

* broadcast subsampled feature correctly

* init col

* temp

* col sampling

* fix histmastrix init

* fix col sampling

* remove cout

* fix out of bound access

* fix core dump

remove core dump file

* update

* add fid

* update

* revert some changes

* temp

* temp

* pass all tests

* bring back some tests

* recover some changes

* fix lint issue

* enable monotone and interaction constraints

* don't specify default for monotone and interactions

* recover column init part

* more recovery

* fix core dumps

* code clean

* revert some changes

* fix test compilation issue

* fix lint issue

* resolve compilation issue

* fix issues of lint caused by rebase

* fix stylistic changes and change variable names

* modularize depth width

* address the comments

* fix failed tests

* wrap perf timers with class

* temp

* pass all lossguide

* pass tests

* add comments

* more changes

* use separate flow for single and tests

* add test for lossguide hist

* remove duplications

* syncing stats for only once

* recover more changes

* recover more changes

* fix root-stats

* simplify code

* remove outdated comments
2019-02-18 13:45:30 -08:00
Jiaming Yuan
a985a99cf0
Accept numpy array view. (#4147)
* Accept array view (slice) in metainfo.
2019-02-18 22:21:34 +08:00
Philip Hyunsu Cho
549c8d6ae9
Prevent empty quantiles in fast hist (#4155)
* Prevent empty quantiles

* Revise and improve unit tests for quantile hist

* Remove unnecessary comment

* Add #2943 as a test case

* Skip test if no sklearn

* Revise misleading comments
2019-02-17 16:01:07 -08:00
tmitanitky
59f868bc60 enable xgb_model in scklearn XGBClassifier and test. (#4092)
* Enable xgb_model parameter in XGClassifier scikit-learn API

https://github.com/dmlc/xgboost/issues/3049

* add test_XGBClassifier_resume():

test for xgb_model parameter in XGBClassifier API.

* Update test_with_sklearn.py

* Fix lint
2019-01-31 11:29:19 -08:00
Jiaming Yuan
e0a279114e
Unify logging facilities. (#3982)
* Unify logging facilities.

* Enhance `ConsoleLogger` to handle different verbosity.
* Override macros from `dmlc`.
* Don't use specialized gamma when building with GPU.
* Remove verbosity cache in monitor.
* Test monitor.
* Deprecate `silent`.
* Fix doc and messages.
* Fix python test.
* Fix silent tests.
2018-12-14 19:29:58 +08:00
Jiaming Yuan
2ea0f887c1
Refactor Python tests. (#3897)
* Deprecate nose tests.
* Format python tests.
2018-11-15 13:56:33 +13:00
Dr. Kashif Rasul
143475b27b use gain for sklearn feature_importances_ (#3876)
* use gain for sklearn feature_importances_

`gain` is a better feature importance criteria than the currently used `weight`

* added importance_type to class

* fixed test

* white space

* fix variable name

* fix deprecation warning

* fix exp array

* white spaces
2018-11-13 03:30:40 -08:00
Philip Hyunsu Cho
ad6e0d55f1
Fix coef_ and intercept_ signature to be compatible with sklearn.RFECV (#3873)
* Fix coef_ and intercept_ signature to be compatible with sklearn.RFECV

* Fix lint

* Fix lint
2018-11-08 19:41:35 -08:00
Rory Mitchell
5d6baed998
Allow sklearn grid search over parameters specified as kwargs (#3791) 2018-10-14 12:44:53 +13:00
Philip Hyunsu Cho
10cd7c8447
Fix #3714: preserve feature names when slicing DMatrix (#3766)
* Fix #3714: preserve feature names when slicing DMatrix

* Add test
2018-10-08 01:04:33 -07:00
Philip Hyunsu Cho
51478a39c9
Fix #3730: scikit-learn 0.20 compatibility fix (#3731)
* Fix #3730: scikit-learn 0.20 compatibility fix

sklearn.cross_validation has been removed from scikit-learn 0.20,
so replace it with sklearn.model_selection

* Display test names for Python tests for clarity
2018-09-27 15:03:05 -07:00
Andrew Thia
9254c58e4d [TREE] add interaction constraints (#3466)
* add interaction constraints

* enable both interaction and monotonic constraints at the same time

* fix lint

* add R test, fix lint, update demo

* Use dmlc::JSONReader to express interaction constraints as nested lists; Use sparse arrays for bookkeeping

* Add Python test for interaction constraints

* make R interaction constraints parameter based on feature index instead of column names, fix R coding style

* Fix lint

* Add BlueTea88 to CONTRIBUTORS.md

* Short circuit when no constraint is specified; address review comments

* Add tutorial for feature interaction constraints

* allow interaction constraints to be passed as string, remove redundant column_names argument

* Fix typo

* Address review comments

* Add comments to Python test
2018-09-04 09:35:39 -07:00
Philip Hyunsu Cho
86d88c0758
Fix #3648: XGBClassifier.predict() should return margin scores when output_margin=True (#3651)
* Fix #3648: XGBClassifier.predict() should return margin scores when output_margin=True

* Fix tests to reflect correct implementation of XGBClassifier.predict(output_margin=True)

* Fix flaky test test_with_sklearn.test_sklearn_api_gblinear
2018-08-30 21:05:05 -07:00
Andy Adinets
58d783df16 Fixed issue 3605. (#3628)
* Fixed issue 3605.

- https://github.com/dmlc/xgboost/issues/3605

* Fixed the bug in a better way.

* Added a test to catch the bug.

* Fixed linter errors.
2018-08-28 10:50:52 -07:00
Shiki-H
24a268a2e3 sklearn api for ranking (#3560)
* added xgbranker

* fixed predict method and ranking test

* reformatted code in accordance with pep8

* fixed lint error

* fixed docstring and added checks on objective

* added ranking demo for python

* fixed suffix in rank.py
2018-08-21 08:26:48 -07:00
Philip Hyunsu Cho
3c72654e3b
Revert "Fix #3485, #3540: Don't use dropout for predicting test sets" (#3563)
* Revert "Fix #3485, #3540: Don't use dropout for predicting test sets (#3556)"

This reverts commit 44811f233071c5805d70c287abd22b155b732727.

* Document behavior of predict() for DART booster

* Add notice to parameter.rst
2018-08-08 09:48:55 -07:00
Philip Hyunsu Cho
44811f2330
Fix #3485, #3540: Don't use dropout for predicting test sets (#3556)
* Fix #3485, #3540: Don't use dropout for predicting test sets

Dropout (for DART) should only be used at training time.

* Add regression test
2018-08-05 10:17:21 -07:00
Andy Adinets
cc6a5a3666 Added finding quantiles on GPU. (#3393)
* Added finding quantiles on GPU.

- this includes datasets where weights are assigned to data rows
- as the quantiles found by the new algorithm are not the same
  as those found by the old one, test thresholds in
    tests/python-gpu/test_gpu_updaters.py have been adjusted.

* Adjustments and improved testing for finding quantiles on the GPU.

- added C++ tests for the DeviceSketch() function
- reduced one of the thresholds in test_gpu_updaters.py
- adjusted the cuts found by the find_cuts_k kernel
2018-07-27 14:03:16 +12:00
jqmp
e9a97e0d88 Add total_gain and total_cover importance measures (#3498)
Add `'total_gain'` and `'total_cover'` as possible `importance_type`
arguments to `Booster.get_score` in the Python package.

`get_score` already accepts a `'gain'` argument, which returns each
feature's average gain over all of its splits.  `'total_gain'` does the
same, but returns a total rather than an average.  This seems more
intuitively meaningful, and also matches the behavior of the R package's
`xgb.importance` function.

I also added an analogous `'total_cover'` command for consistency.

This should resolve #3484.
2018-07-23 00:30:55 -07:00
Henry Gouk
a13e29ece1 Add LASSO (#3429)
* Allow multiple split constraints

* Replace RidgePenalty with ElasticNet

* Add test for checking Ridge, LASSO, and Elastic Net are implemented
2018-07-15 16:38:26 +12:00