Skip related tests when sklearn is not installed. (#4791)

This commit is contained in:
Jiaming Yuan 2019-08-21 00:32:52 -04:00 committed by GitHub
parent fba298fecb
commit 6e6216ad67
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 13 additions and 6 deletions

View File

@ -2,7 +2,8 @@
import numpy as np
import xgboost
import unittest
from sklearn.metrics import accuracy_score
import testing as tm
import pytest
dpath = 'demo/data/'
rng = np.random.RandomState(1994)
@ -49,7 +50,9 @@ class TestInteractionConstraints(unittest.TestCase):
diff2 = preds[2] - preds[1]
assert np.all(np.abs(diff2 - diff2[0]) < 1e-4)
@pytest.mark.skipif(**tm.no_sklearn())
def test_training_accuracy(self, tree_method='hist'):
from sklearn.metrics import accuracy_score
dtrain = xgboost.DMatrix(dpath + 'agaricus.txt.train?indexing_mode=1')
dtest = xgboost.DMatrix(dpath + 'agaricus.txt.test?indexing_mode=1')
params = {

View File

@ -1,10 +1,12 @@
import numpy as np
import xgboost as xgb
import unittest
from sklearn.metrics import accuracy_score
import testing as tm
import pytest
dpath = 'demo/data/'
def is_increasing(y):
return np.count_nonzero(np.diff(y) < 0.0) == 0
@ -100,7 +102,9 @@ class TestMonotoneConstraints(unittest.TestCase):
assert is_correctly_constrained(constrained_hist_method)
@pytest.mark.skipif(**tm.no_sklearn())
def test_training_accuracy(self):
from sklearn.metrics import accuracy_score
dtrain = xgb.DMatrix(dpath + 'agaricus.txt.train?indexing_mode=1')
dtest = xgb.DMatrix(dpath + 'agaricus.txt.test?indexing_mode=1')
params = {'eta': 1, 'max_depth': 6, 'objective': 'binary:logistic',

View File

@ -1,12 +1,9 @@
import numpy as np
from scipy.sparse import csr_matrix
import xgboost
import sys
import os
from sklearn.datasets import load_svmlight_files
import unittest
import itertools
import glob
import shutil
import urllib.request
import zipfile
@ -36,6 +33,7 @@ def test_ranking_with_unweighted_data():
auc_rec = evals_result['train']['aucpr']
assert all(p <= q for p, q in zip(auc_rec, auc_rec[1:]))
def test_ranking_with_weighted_data():
Xrow = np.array([1, 2, 6, 8, 11, 14, 16, 17])
Xcol = np.array([0, 0, 1, 1, 2, 2, 3, 3])
@ -82,6 +80,7 @@ class TestRanking(unittest.TestCase):
"""
Download and setup the test fixtures
"""
from sklearn.datasets import load_svmlight_files
# download the test data
cls.dpath = 'demo/rank/'
src = 'https://s3-us-west-2.amazonaws.com/xgboost-examples/MQ2008.zip'
@ -91,7 +90,8 @@ class TestRanking(unittest.TestCase):
with zipfile.ZipFile(target, 'r') as f:
f.extractall(path=cls.dpath)
x_train, y_train, qid_train, x_test, y_test, qid_test, x_valid, y_valid, qid_valid = load_svmlight_files(
(x_train, y_train, qid_train, x_test, y_test, qid_test,
x_valid, y_valid, qid_valid) = load_svmlight_files(
(cls.dpath + "MQ2008/Fold1/train.txt",
cls.dpath + "MQ2008/Fold1/test.txt",
cls.dpath + "MQ2008/Fold1/vali.txt"),